Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
1,234
result(s) for
"Isoniazid - pharmacology"
Sort by:
What are the most efficacious treatment regimens for isoniazid-resistant tuberculosis? A systematic review and network meta-analysis
by
N Tsuchiya
,
M C Lipman
,
H-A Hatherell
in
Antitubercular Agents
,
Antitubercular Agents - pharmacology
,
Antitubercular Agents - therapeutic use
2016
Consensus on the best treatment regimens for patients with isoniazid-resistant TB is limited; global treatment guidelines differ. We undertook a systematic review and meta-analysis using mixed-treatment comparisons methodology to provide an up-to-date summary of randomised controlled trials (RCTs) and relative regimen efficacy.
Ovid MEDLINE, the Web of Science and EMBASE were mined using search terms for TB, drug therapy and RCTs. Extracted data were inputted into fixed-effects and random-effects models. ORs for all possible network comparisons and hierarchical rankings for different regimens were obtained.
12 604 records were retrieved and 118 remained postextraction, representing 59 studies-27 standalone and 32 with multiple papers. In comparison to a baseline category that included the WHO-recommended regimen for countries with high levels of isoniazid resistance (rifampicin-containing regimens using fewer than three effective drugs at 4 months, in which rifampicin was protected by another effective drug at 6 months, and rifampicin was taken for 6 months), extending the duration of rifampicin and increasing the number of effective drugs at 4 months lowered the odds of unfavourable outcomes (treatment failure or the lack of microbiological cure; relapse post-treatment; death due to TB) in a fixed-effects model (OR 0.31 (95% credible interval 0.12-0.81)). In a random-effects model all estimates crossed the null.
Our systematic review and network meta-analysis highlight a regimen category that may be more efficacious than the WHO population level recommendation, and identify knowledge gaps where data are sparse.
PROSPERO CRD42014015025.
Journal Article
Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing
by
Drobniewski, Francis A
,
He, Guangxue
,
Shendure, Jay
in
Antimicrobial agents
,
Antitubercular Agents - pharmacology
,
Antitubercular Agents - therapeutic use
2018
Proper treatment of tuberculosis requires a combination of drugs to which the causative organism is susceptible. In this report, genotypic assessment of antimicrobial susceptibility of more than 10,000
M. tuberculosis
isolates was correlated with phenotypic test results.
Journal Article
Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis
2021
Tuberculosis is a chronic disease that displays several features commonly associated with biofilm-associated infections: immune system evasion, antibiotic treatment failures, and recurrence of infection. However, although
Mycobacterium tuberculosis
(Mtb) can form cellulose-containing biofilms in vitro, it remains unclear whether biofilms are formed during infection in vivo. Here, we demonstrate the formation of Mtb biofilms in animal models of infection and in patients, and that biofilm formation can contribute to drug tolerance. First, we show that cellulose is also a structural component of the extracellular matrix of in vitro biofilms of fast and slow-growing nontuberculous mycobacteria. Then, we use cellulose as a biomarker to detect Mtb biofilms in the lungs of experimentally infected mice and non-human primates, as well as in lung tissue sections obtained from patients with tuberculosis. Mtb strains defective in biofilm formation are attenuated for survival in mice, suggesting that biofilms protect bacilli from the host immune system. Furthermore, the administration of nebulized cellulase enhances the antimycobacterial activity of isoniazid and rifampicin in infected mice, supporting a role for biofilms in phenotypic drug tolerance. Our findings thus indicate that Mtb biofilms are relevant to human tuberculosis.
Mycobacterium tuberculosis
forms biofilms in vitro, but it is unclear whether biofilms are also formed during infection in vivo. Here, Chakraborty et al. demonstrate the formation of biofilms in animal models of infection and in patients with tuberculosis, and that biofilm formation can contribute to drug tolerance.
Journal Article
Bacterial Factors That Predict Relapse after Tuberculosis Therapy
by
Mac Kenzie, William R
,
Diem, Lois
,
Johnson, John L
in
Adult
,
Allergies
,
Antitubercular Agents - pharmacology
2018
In pretreatment isolates of
M. tuberculosis
with decrements of the minimum inhibitory concentration of isoniazid or rifampin below the standard resistance breakpoint, higher MIC values were associated with a greater risk of relapse than lower MIC values.
Journal Article
Dynamic Persistence of Antibiotic-Stressed Mycobacteria
2013
Exposure of an isogenic bacterial population to a cidal antibiotic typically fails to eliminate a small fraction of refractory cells. Historically, fractional killing has been attributed to infrequently dividing or nondividing \"persisters.\" Using microfluidic cultures and time-lapse microscopy, we found that Mycobacterium smegmatis persists by dividing in the presence of the drug isoniazid (INH). Although persistence in these studies was characterized by stable numbers of cells, this apparent stability was actually a dynamic state of balanced division and death. Single cells expressed catalase-peroxidase (KatG), which activates INH, in stochastic pulses that were negatively correlated with cell survival. These behaviors may reflect epigenetic effects, because KatG pulsing and death were correlated between sibling cells. Selection of lineages characterized by infrequent KatG pulsing could allow nonresponsive adaptation during prolonged drug exposure.
Journal Article
The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling
by
Dodd, Peter J.
,
Houben, Rein M. G. J.
in
Antitubercular Agents - pharmacology
,
Biology and Life Sciences
,
Demography
2016
The existing estimate of the global burden of latent TB infection (LTBI) as \"one-third\" of the world population is nearly 20 y old. Given the importance of controlling LTBI as part of the End TB Strategy for eliminating TB by 2050, changes in demography and scientific understanding, and progress in TB control, it is important to re-assess the global burden of LTBI.
We constructed trends in annual risk in infection (ARI) for countries between 1934 and 2014 using a combination of direct estimates of ARI from LTBI surveys (131 surveys from 1950 to 2011) and indirect estimates of ARI calculated from World Health Organisation (WHO) estimates of smear positive TB prevalence from 1990 to 2014. Gaussian process regression was used to generate ARIs for country-years without data and to represent uncertainty. Estimated ARI time-series were applied to the demography in each country to calculate the number and proportions of individuals infected, recently infected (infected within 2 y), and recently infected with isoniazid (INH)-resistant strains. Resulting estimates were aggregated by WHO region. We estimated the contribution of existing infections to TB incidence in 2035 and 2050. In 2014, the global burden of LTBI was 23.0% (95% uncertainty interval [UI]: 20.4%-26.4%), amounting to approximately 1.7 billion people. WHO South-East Asia, Western-Pacific, and Africa regions had the highest prevalence and accounted for around 80% of those with LTBI. Prevalence of recent infection was 0.8% (95% UI: 0.7%-0.9%) of the global population, amounting to 55.5 (95% UI: 48.2-63.8) million individuals currently at high risk of TB disease, of which 10.9% (95% UI:10.2%-11.8%) was isoniazid-resistant. Current LTBI alone, assuming no additional infections from 2015 onwards, would be expected to generate TB incidences in the region of 16.5 per 100,000 per year in 2035 and 8.3 per 100,000 per year in 2050. Limitations included the quantity and methodological heterogeneity of direct ARI data, and limited evidence to inform on potential clearance of LTBI.
We estimate that approximately 1.7 billion individuals were latently infected with Mycobacterium tuberculosis (M.tb) globally in 2014, just under a quarter of the global population. Investment in new tools to improve diagnosis and treatment of those with LTBI at risk of progressing to disease is urgently needed to address this latent reservoir if the 2050 target of eliminating TB is to be reached.
Journal Article
Superfast Synthesis of Stabilized Silver Nanoparticles Using Aqueous Allium sativum (Garlic) Extract and Isoniazid Hydrazide Conjugates: Molecular Docking and In-Vitro Characterizations
by
Vijaya, Rajendran
,
Ahmad, Fazil
,
Mohamed, Jamal Moideen Muthu
in
Antitubercular Agents - chemistry
,
Antitubercular Agents - pharmacology
,
Binding Sites
2021
Green synthesis of silver nanoparticles (AgNPs) was synthesized from fresh garlic extract coupled with isoniazid hydrazide (INH), a commonly used antibiotic to treat tuberculosis. A molecular docking study conducted with the selected compounds compared with anthranilate phosphoribosyltransferase (trpD) from Mycobacterium tuberculosis. The aqueous extract of garlic was prepared and mixed with silver nitrate (AgNO3) solution for the superfast synthesis of stable AgNPs. INH was then conjugated with AgNPs at different ratios (v/v) to obtain stable INH-AgNPs conjugates (AgNCs). The resulting AgNCs characterized by FTIR spectra revealed the ultrafast formation of AgNPs (<5 s) and perfectly conjugated with INH. The shifting of λmax to longer wavelength, as found from UV spectral analysis, confirmed the formation of AgNCs, among which ideal formulations (F7, F10, and F13) have been pre-selected. The zeta particle size (PS) and the zeta potential (ZP) of AgNPs were found to be 145.3 ± 2.1 nm and −33.1 mV, respectively. These data were significantly different compared to that of AgNCs (160 ± 2.7 nm and −14.4 mV for F7; 208.9 ± 2.9 nm and −19.8 mV for F10; and 281.3 ± 3.6 nm and −19.5 mV for F13), most probably due to INH conjugation. The results of XRD, SEM and EDX confirmed the formation of AgNCs. From UV spectral analysis, EE of INH as 51.6 ± 5.21, 53.6 ± 6.88, and 70.01 ± 7.11 %, for F7, F10, and F13, respectively. The stability of the three formulations was confirmed in various physiological conditions. Drug was released in a sustainable fashion. Besides, from the preferred 23 compounds, five compounds namely Sativoside R2, Degalactotigonin, Proto-desgalactotigonin, Eruboside B and Sativoside R1 showed a better docking score than trpD, and therefore may help in promoting anti-tubercular activity.
Journal Article
Evaluation of a Rapid Molecular Drug-Susceptibility Test for Tuberculosis
2017
Increasing drug resistance in
Mycobacterium tuberculosis
complicates the management of tuberculosis. Development of a point-of-care test to determine drug susceptibility could greatly enhance care. In this report, a rapid
M. tuberculosis
diagnostic is assessed.
Journal Article
A biochemically-interpretable machine learning classifier for microbial GWAS
2020
Current machine learning classifiers have successfully been applied to whole-genome sequencing data to identify genetic determinants of antimicrobial resistance (AMR), but they lack causal interpretation. Here we present a metabolic model-based machine learning classifier, named Metabolic Allele Classifier (MAC), that uses flux balance analysis to estimate the biochemical effects of alleles. We apply the MAC to a dataset of 1595 drug-tested
Mycobacterium tuberculosis
strains and show that MACs predict AMR phenotypes with accuracy on par with mechanism-agnostic machine learning models (isoniazid AUC = 0.93) while enabling a biochemical interpretation of the genotype-phenotype map. Interpretation of MACs for three antibiotics (pyrazinamide, para-aminosalicylic acid, and isoniazid) recapitulates known AMR mechanisms and suggest a biochemical basis for how the identified alleles cause AMR. Extending flux balance analysis to identify accurate sequence classifiers thus contributes mechanistic insights to GWAS, a field thus far dominated by mechanism-agnostic results.
Current machine learning classifiers have been applied to whole-genome sequencing data to identify determinants of antimicrobial resistance, but they lack interpretability. Here the authors present a metabolic machine learning classifier that uses flux balance analysis to estimate the biochemical effects of alleles.
Journal Article
Synthesis, characterization and cytotoxic evaluation of metal complexes derived from new N′-(2-cyanoacetyl)isonicotinohydrazide
by
Samir, Ghada
,
Abdel-Rhman, Mohamed H.
,
Hosny, Nasser M.
in
639/638/263
,
639/638/563/979
,
639/638/911
2025
The novel ligand (H
2
L), N’-(2-cyanoacetyl)isonicotinohydrazide, has been synthesized
via
reacting the isonicotinic hydrazide with 1-cyanoacetyl-3,5-dimethylpyrazole. The keto-form of the free ligand has been evoked from its spectral data. Based on elemental analyses and mass spectra, the ligand formed 1:1 (M: L) metal complexes with the acetate salts of Cu(II), Co(II), Ni(II) and Zn(II). The complexes’ spectral analyses revealed that the ligand behaved as a mononegative bidentate
via
the hydrazonyl N
1
and deprotonated enolized acetyl oxygen. Moreover, the DFT quantum chemical calculations revealed that the ligand had higher HOMO and lower LUMO energies than metal complexes, implying an electron donating character. Furthermore, the in vitro anticancer activity against HepG2 and HCT-116 cell lines displayed that the ligand was more potent than doxorubicin against both cell lines, although the metal complexes displayed lower efficacy.
Journal Article