Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,261 result(s) for "Isoptera"
Sort by:
Soil CO sub(2) Emissions Associated with Termitaria in Tropical Savanna: Evidence for Hot-Spot Compensation
Our understanding of carbon (C) dynamics within savannas is very limited, especially how source/sink dynamics are influenced by the resident biota. Previous measurements of epigeal termite mounds (termitaria), ubiquitous in many savannas, have shown that they are considerable point sources of soil carbon dioxide (CO sub(2)), whereas CO sub(2) measurements collected outside the mounds were generally assumed to be independent of termite activity. However, no measurements were conducted along gradients away from the mounds to confirm this. We quantified daytime soil CO sub(2) emissions (soil respiration) along gradients from the center to 20 m from the mound edge in Serengeti National Park, and measured soil temperature/moisture, macro-invertebrate abundance, and vegetation height as variables potentially influencing these emissions. Further, we quantified how far into the savanna termitaria impact CO sub(2) emissions. As in other studies, we found the highest soil CO sub(2) fluxes at the termitaria-center and considerably lower fluxes in the surrounding savanna. Macro-invertebrate abundance was associated with the differences in emissions measured, whereas the other variables were not. The analysis of spatial autocorrelation revealed significantly lower fluxes between the termitaria edge and up to 9 m from the edge compared to the values measured at the termitaria-center and between 10 and 20 m from the termitaria edge. When extrapolating the emissions across the landscape our results suggest that the lower CO sub(2) emissions found between the edge and 9 m fully compensate for the high fluxes measured at the termitaria center. Consequently, our findings provide evidence that termitaria might influence the savanna C source-sink dynamics differently than previously thought.
Termite evolution: mutualistic associations, key innovations, and the rise of Termitidae
Termites are a clade of eusocial wood-feeding roaches with > 3000 described species. Eusociality emerged ~ 150 million years ago in the ancestor of modern termites, which, since then, have acquired and sometimes lost a series of adaptive traits defining of their evolution. Termites primarily feed on wood, and digest cellulose in association with their obligatory nutritional mutualistic gut microbes. Recent advances in our understanding of termite phylogenetic relationships have served to provide a tentative timeline for the emergence of innovative traits and their consequences on the ecological success of termites. While all “lower” termites rely on cellulolytic protists to digest wood, “higher” termites (Termitidae), which comprise ~ 70% of termite species, do not rely on protists for digestion. The loss of protists in Termitidae was a critical evolutionary step that fostered the emergence of novel traits, resulting in a diversification of morphology, diets, and niches to an extent unattained by “lower” termites. However, the mechanisms that led to the initial loss of protists and the succession of events that took place in the termite gut remain speculative. In this review, we provide an overview of the key innovative traits acquired by termites during their evolution, which ultimately set the stage for the emergence of “higher” termites. We then discuss two hypotheses concerning the loss of protists in Termitidae, either through an externalization of the digestion or a dietary transition. Finally, we argue that many aspects of termite evolution remain speculative, as most termite biological diversity and evolutionary trajectories have yet to be explored.
Phylogeny of Dictyoptera: Dating the Origin of Cockroaches, Praying Mantises and Termites with Molecular Data and Controlled Fossil Evidence
Understanding the origin and diversification of organisms requires a good phylogenetic estimate of their age and diversification rates. This estimate can be difficult to obtain when samples are limited and fossil records are disputed, as in Dictyoptera. To choose among competing hypotheses of origin for dictyopteran suborders, we root a phylogenetic analysis (~800 taxa, 10 kbp) within a large selection of outgroups and calibrate datings with fossils attributed to lineages with clear synapomorphies. We find the following topology: (mantises, (other cockroaches, (Cryptocercidae, termites)). Our datings suggest that crown-Dictyoptera-and stem-mantises-would date back to the Late Carboniferous (~ 300 Mya), a result compatible with the oldest putative fossil of stem-dictyoptera. Crown-mantises, however, would be much more recent (~ 200 Mya; Triassic/Jurassic boundary). This pattern (i.e., old origin and more recent diversification) suggests a scenario of replacement in carnivory among polyneopterous insects. The most recent common ancestor of (cockroaches + termites) would date back to the Permian (~275 Mya), which contradicts the hypothesis of a Devonian origin of cockroaches. Stem-termites would date back to the Triassic/Jurassic boundary, which refutes a Triassic origin. We suggest directions in extant and extinct species sampling to sharpen this chronological framework and dictyopteran evolutionary studies.
Complementary symbiont contributions to plant decomposition in a fungus-farming termite
Termites normally rely on gut symbionts to decompose organic matter but the Macrotermitinae domesticated Termitomyces fungi to produce their own food. This transition was accompanied by a shift in the composition of the gut microbiota, but the complementary roles of these bacteria in the symbiosis have remained enigmatic. We obtained high-quality annotated draft genomes of the termite Macrotermes natalensis, its Termitomyces symbiont, and gut metagenomes from workers, soldiers, and a queen. We show that members from 111 of the 128 known glycoside hydrolase families are represented in the symbiosis, that Termitomyces has the genomic capacity to handle complex carbohydrates, and that worker gut microbes primarily contribute enzymes for final digestion of oligosaccharides. This apparent division of labor is consistent with the Macrotermes gut microbes being most important during the second passage of comb material through the termite gut, after a first gut passage where the crude plant substrate is inoculated with Termitomyces asexual spores so that initial fungal growth and polysaccharide decomposition can proceed with high efficiency. Complex conversion of biomass in termite mounds thus appears to be mainly accomplished by complementary cooperation between a domesticated fungal monoculture and a specialized bacterial community. In sharp contrast, the gut microbiota of the queen had highly reduced plant decomposition potential, suggesting that mature reproductives digest fungal material provided by workers rather than plant substrate.
Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes
Chemical communication is fundamental to success in social insect colonies. Species-, colony-, and caste-specific blends of cuticular hydrocarbons (CHCs) and other chemicals have been well documented as pheromones, mediating important behavioral and physiological aspects of social insects. More specifically, royal pheromones used by queens (and kings in termites) enable workers to recognize and care for these vital individuals and maintain the reproductive division of labor. In termites, however, no royal-recognition pheromones have been identified to date. In the current study, solvent extracts of the subterranean termite Reticulitermes flavipes were analyzed to assess differences in cuticular compounds among castes. We identified a royal-specific hydrocarbon—heneicosane—and several previously unreported and highly royal enriched long-chain alkanes. When applied to glass dummies, heneicosane elicited worker behavioral responses identical to those elicited by live termite queens, including increased vibratory shaking and antennation. Further, the behavioral effects of heneicosane were amplified when presented with nestmate termite workers’ cuticular extracts, underscoring the importance of chemical context in termite royal recognition. Thus, heneicosane is a royal-recognition pheromone that is active in both queens and kings of R. flavipes. The use of heneicosane as a queen and king recognition pheromone by termites suggests that CHCs evolved as royal pheromones ∼150 million years ago, ∼50 million years before their first use as queen-recognition pheromones in social Hymenoptera. We therefore infer that termites and social Hymenoptera convergently evolved the use of these ubiquitous compounds in royal recognition.
Efficiency of the cytochrome c oxidase subunit II gene for the delimitation of termite species (Blattodea: Isoptera) in the state of Paraíba, northeastern Brazil
With the aim of expanding the possibilities of identifying termite species, in the present study we generated genetic data based on sequences of the mitochondrial gene encoding cytochrome c oxidase subunit II (COII) for termites (Blattodea: Isoptera) occurring in the state of Paraíba, northeastern Brazil. The genetic data were obtained from 135 COII sequences identified in 28 genera and 48 species. These are the first COII sequences for 15 taxa (31.2%) available in public sources. Using delimitation methods based on distance (ASAP and ABGD) and tree (GMYC, bPTP, mPTP and PTP), we confirmed the efficiency of this technique in delimiting most species. However, the assessment of intraspecific and interspecific variation revealed the occurrence of species with intraspecific genetic variation classified as high (> 2%). The analysis of identification efficiency based on our genetic data revealed a high rate of correct identifications (91.80% to 100%), confirming the efficiency of COII in species identification. The generation of these genetic data contributed as an alternative method for future identifications, allowed the understanding of the phylogenetic diversity of some termite species in Paraíba and the application of new molecular techniques to collect data on the conservation of the state.
Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales: e0140114
Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter). Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood), they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.
Unravelling the evolution of wood-feeding in termites with 47 high-resolution genome assemblies
Termites are a lineage of social cockroaches abundant in tropical ecosystems where they are key decomposers of organic matter. Despite their ecological significance, only a handful of reference-quality termite genomes have been sequenced, which is insufficient to unravel the genetic mechanisms that have contributed to their ecological success. Here, we perform sequencing and hybrid assembly of 45 taxonomically and ecologically diverse termites and two cockroaches, resulting in haplotype-merged genome assemblies of 47 species, 22 of which were near-chromosome level. Next, we examine the link between termite dietary evolution and major genomic events. We find that Termitidae, which include ~80% of described termite species, have larger genomes with more genes and a higher proportion of transposons than other termites. Our analyses identify a gene number expansion early in the evolution of Termitidae, including an expansion of the repertoire of CAZymes, the genes involved in lignocellulose degradation. Notably, this expansion of genomes and gene repertoires coincided with the origin of soil-feeding in Termitidae and remained unchanged in lineages that secondarily reverted to a wood-based diet. Overall, our sequencing effort multiplies the number of available termite genomes by six and provides insights into the genome evolution of an ancient lineage of social insects. Termites, the largest lineage of non-hymenopteran social insects, are important decomposers of plant organic matter in the tropics. Here, the authors sequence the genomes of 45 termites and two cockroach outgroups and investigate the influence of diet on the evolution of termite genomes.
Symbiotic digestion of lignocellulose in termite guts
Key Points The symbiotic digestion of lignocellulose by termites involves the sequential activities of the host and its gut microbiota. The hindgut of termites is a microbial bioreactor that efficiently converts polymeric substrates to acetate and variable amounts of methane, with hydrogen as a central intermediate. The metabolic processes are strongly affected by the influx of oxygen into the gut periphery. Whereas primitive termites digest wood with the help of cellulolytic protists, the more advanced lineages have an entirely prokaryotic gut microbiota. Major shifts in the gut microbial community seem to reflect changes in digestive strategies and diet. The majority of termites are soil-feeding and mineralize peptides and other nitrogen-rich humus components. The consequences of the microbial processes in their highly alkaline guts for nitrogen cycling in tropical soils and greenhouse gas production are only scarcely investigated. It is becoming increasingly evident that the association of termites with gut bacteria not only functions in digestion but also enables the host to use the biosynthetic capacities of its symbionts as a nutritional resource. Termites are promising sources of novel microorganisms and catalytic capacities for the production of biofuels from lignocellulosic feedstock. However, the nature of the activities that are involved in the efficient digestion of lignified cell walls remains unclear. Termites depend on an intricate symbiosis with flagellated protists, archaea and bacteria in their guts for the digestion of lignocellulose. Here, Andreas Brune gives an overview of the diversity of the termite microbiota and highlights important microbial processes in the gut microecosystem and their implications for host nutrition. Their ability to degrade lignocellulose gives termites an important place in the carbon cycle. This ability relies on their partnership with a diverse community of bacterial, archaeal and eukaryotic gut symbionts, which break down the plant fibre and ferment the products to acetate and variable amounts of methane, with hydrogen as a central intermediate. In addition, termites rely on the biosynthetic capacities of their gut microbiota as a nutritional resource. The mineralization of humus components in the guts of soil-feeding species also contributes to nitrogen cycling in tropical soils. Lastly, the high efficiency of their minute intestinal bioreactors makes termites promising models for the industrial conversion of lignocellulose into microbial products and the production of biofuels.
An integrative phylogenomic approach illuminates the evolutionary history of cockroaches and termites (Blattodea)
Phylogenetic relationships among subgroups of cockroaches and termites are still matters of debate. Their divergence times and major phenotypic transitions during evolution are also not yet settled. We addressed these points by combining the first nuclear phylogenomic study of termites and cockroaches with a thorough approach to divergence time analysis, identification of endosymbionts, and reconstruction of ancestral morphological traits and behaviour. Analyses of the phylogenetic relationships within Blattodea robustly confirm previously uncertain hypotheses such as the sister-group relationship between Blaberoidea and remaining Blattodea, and Lamproblatta being the closest relative to the social and wood-feeding Cryptocercus and termites. Consequently, we propose new names for various clades in Blattodea: Cryptocercus + termites = Tutricablattae; Lamproblattidae + Tutricablattae = Kittrickea; and Blattoidea + Corydioidea = Solumblattodea. Our inferred divergence times contradict previous studies by showing that most subgroups of Blattodea evolved in the Cretaceous, reducing the gap between molecular estimates of divergence times and the fossil record. On a phenotypic level, the blattodean ground-plan is for egg packages to be laid directly in a hole while other forms of oviposition, including ovovivipary and vivipary, arose later. Finally, other changes in egg care strategy may have allowed for the adaptation of nest building and other novelties.