Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
227
result(s) for
"Ixodes - pathogenicity"
Sort by:
Prevalence of Tick-Borne Pathogens in Ixodes ricinus and Dermacentor reticulatus Ticks from Different Geographical Locations in Belarus
by
Velhin, Sviataslau
,
Reye, Anna L.
,
Stegniy, Valentina
in
Anaplasma - isolation & purification
,
Anaplasma - pathogenicity
,
Anaplasma phagocytophilum
2013
Worldwide, ticks are important vectors of human and animal pathogens. Besides Lyme Borreliosis, a variety of other bacterial and protozoal tick-borne infections are of medical interest in Europe. In this study, 553 questing and feeding Ixodes ricinus (n = 327) and Dermacentor reticulatus ticks (n = 226) were analysed by PCR for Borrelia, Rickettsia, Anaplasma, Coxiella, Francisella and Babesia species. Overall, the pathogen prevalence in ticks was 30.6% for I. ricinus and 45.6% for D. reticulatus. The majority of infections were caused by members of the spotted-fever group rickettsiae (24.4%), 9.4% of ticks were positive for Borrelia burgdorferi sensu lato, with Borrelia afzelii being the most frequently detected species (40.4%). Pathogens with low prevalence rates in ticks were Anaplasma phagocytophilum (2.2%), Coxiella burnetii (0.9%), Francisella tularensis subspecies (0.7%), Bartonella henselae (0.7%), Babesia microti (0.5%) and Babesia venatorum (0.4%). On a regional level, hotspots of pathogens were identified for A. phagocytophilum (12.5-17.2%), F. tularensis ssp. (5.5%) and C. burnetii (9.1%), suggesting established zoonotic cycles of these pathogens at least at these sites. Our survey revealed a high burden of tick-borne pathogens in questing and feeding I. ricinus and D. reticulatus ticks collected in different regions in Belarus, indicating a potential risk for humans and animals. Identified hotspots of infected ticks should be included in future surveillance studies, especially when F. tularensis ssp. and C. burnetii are involved.
Journal Article
Immune Cell Targets of Infection at the Tick-Skin Interface during Powassan Virus Transmission
2016
Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive disease with 50% of survivors displaying long-term neurological sequelae. Human POWV cases have been documented in Canada, the United States, and Russia. Although the number of reported POWV human cases has increased in the past fifteen years, POWV remains one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for POWV, and the virus is transmitted to a host's skin very early during the tick feeding process. Central to the successful transmission of a tick-borne pathogen are complex interactions between the host immune response and early tick-mediated immunomodulation, all of which initially occur at the skin interface. In our prior work, we examined the cutaneous immune gene expression during the early stages of POWV-infected Ixodes scapularis feeding. The present study serves to further investigate the skin interface by identifying early cell targets of infection at the POWV-infected tick feeding site. An in vivo infection model consisting of POWV-infected ticks feeding on mice for short durations was used in this study. Skin biopsies from the tick feeding sites were harvested at various early time points, enabling us to examine the skin histopathology and detect POWV viral antigen in immune cells present at the tick feeding site. The histopathology from the present study demonstrates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating that macrophages and fibroblasts contain POWV antigens, which suggests that they are early cellular targets of infection at the tick feeding site. These data provide key insights towards defining the complex interactions between the host immune response and early tick-mediated immunomodulation.
Journal Article
Repression of tick microRNA-133 induces organic anion transporting polypeptide expression critical for Anaplasma phagocytophilum survival in the vector and transmission to the vertebrate host
by
Taank, Vikas
,
Anderson, John F
,
Neelakanta, Girish
in
Analysis
,
Anaplasma phagocytophilum
,
Anaplasma phagocytophilum - genetics
2020
The microRNAs (miRNAs) are important regulators of gene expression. In this study, we provide evidence for the first time to show that rickettsial pathogen Anaplasma phagocytophilum infection results in the down-regulation of tick microRNA-133 (miR-133), to induce Ixodes scapularis organic anion transporting polypeptide (isoatp4056) gene expression critical for this bacterial survival in the vector and for its transmission to the vertebrate host. Transfection studies with recombinant constructs containing transcriptional fusions confirmed binding of miR-133 to isoatp4056 mRNA. Treatment with miR-133 inhibitor resulted in increased bacterial burden and isoatp4056 expression in ticks and tick cells. In contrast, treatment with miR-133 mimic or pre-mir-133 resulted in dramatic reduction in isoatp4056 expression and bacterial burden in ticks and tick cells. Moreover, treatment of ticks with pre-mir-133 affected vector-mediated A. phagocytophilum infection of murine host. These results provide novel insights to understand impact of modulation of tick miRNAs on pathogen colonization in the vector and their transmission to infect the vertebrate host.
Journal Article
Frequent Prescribed Fires Can Reduce Risk of Tick-borne Diseases
by
Zemtsova, Galina E.
,
Yabsley, Michael J.
,
Berghaus, Roy D.
in
631/158/1469
,
631/158/2465
,
692/699/255/1318
2019
Recently, a two-year study found that long-term prescribed fire significantly reduced tick abundance at sites with varying burn regimes (burned surrounded by burned areas [BB], burned surrounded by unburned areas [BUB], and unburned surrounded by burned areas [UBB]). In the current study, these ticks were tested for pathogens to more directly investigate the impacts of long-term prescribed burning on human disease risk. A total of 5,103 ticks (4,607
Amblyomma americanum
, 76
Amblyomma maculatum
, 383
Ixodes scapularis
, two
Ixodes brunneus
, and 35
Dermacentor variabilis
) were tested
for Borrelia
spp.,
Rickettsia
spp.,
Ehrlichia
spp., and
Anaplasma phagocytophilum
. Long-term prescribed fire did not significantly impact pathogen prevalence except that
A. americanum
from burned habitats had significantly lower prevalence of
Rickettsia
(8.7% and 4.6% for BUB and UBB sites, respectively) compared to ticks from control sites (unburned, surrounded by unburned [UBUB])(14.6%). However, during the warm season (spring/summer), encounter rates with ticks infected with pathogenic bacteria was significantly lower (98%) at burned sites than at UBUB sites. Thus, despite there being no differences in pathogen prevalence between burned and UBUB sites, risk of pathogen transmission is lower at sites subjected to long-term burning due to lower encounter rates with infected ticks.
Journal Article
Prevalence of Rickettsia spp. in Ticks and Serological and Clinical Outcomes in Tick-Bitten Individuals in Sweden and on the Åland Islands
2016
Tick-transmitted diseases are an emerging health problem, and the hard tick Ixodes ricinus is the main vector for Borrelia spp., tick-borne encephalitis virus and most of the spotted fever Rickettsiae in Europe. The aim of the present study was to examine the incidence of rickettsial infection in the southernmost and south central parts of Sweden and the Åland Islands in Finland, the risk of infection in humans and its correlation with a bite of a Rickettsia-infected tick, the self-reported symptoms of rickettsial disease, and the prevalence of co-infection between Rickettsia spp. and Borrelia spp. Persons with a recent tick bite were enrolled through public media and asked to answer a questionnaire, provide a blood sample and bring detached ticks at enlistment and at follow-up three months later. Blood samples were previously analysed for Borrelia spp. antibodies and, for this report, analysed for antibodies to Rickettsia spp. by immunofluorescence and in 16 cases also using Western Blot. Ninety-six (44.0%) of the 218 participants were seropositive for IgG antibodies to Rickettsia spp. Forty (18.3%) of the seropositive participants had increased titres at the follow-up, indicating recent/current infection, while four (1.8%) had titres indicating probable recent/current infection (≥1:256). Of 472 ticks, 39 (8.3%) were Rickettsia sp. positive. Five (31.3%) of 16 participants bitten by a Rickettsia-infected tick seroconverted. Experience of the self-reported symptoms nausea (p = 0.006) and radiating pain (p = 0.041) was more common among those with recent, current or probable infection compared to those who did not seroconvert. Participants who showed seroreactivity or seroconversion to Rickettsia spp. had more symptoms than those who were seronegative. Seven (3.2%) participants showed seroconversion to Borrelia spp., and three (1.4%) of these showed seroconversion to both Rickettsia spp. and Borrelia spp., in accordance with previous studies in Sweden. Symptoms of rickettsial disease were in most of the cases vague and general that were difficult to differentiate from other tick-borne diseases.
Journal Article
The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods
2017
Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.
Journal Article
Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds
2017
The spirochete bacterium
Borrelia afzelii
is the most common cause of Lyme borreliosis in Europe. This tick-borne pathogen can establish systemic infections in rodents but not in birds. However, several field studies have recovered larval
Ixodes ricinus
ticks infected with
B. afzelii
from songbirds suggesting successful transmission of
B. afzelii
. We reviewed the literature to determine which songbird species were the most frequent carriers of
B. afzelii
-infected
I. ricinus
larvae and nymphs. We tested experimentally whether
B. afzelii
is capable of co-feeding transmission on two common European bird species, the blackbird (
Turdus merula
) and the great tit (
Parus major
). For each bird species, four naïve individuals were infested with
B. afzelii
-infected
I. ricinus
nymphal ticks and pathogen-free larval ticks. None of the co-feeding larvae tested positive for
B. afzelii
in blackbirds, but a low percentage of infected larvae (3.33%) was observed in great tits. Transstadial transmission of
B. afzelii
DNA from the engorged nymphs to the adult ticks was observed in both bird species. However, BSK culture found that these spirochetes were not viable. Our study suggests that co-feeding transmission of
B. afzelii
is not efficient in these two songbird species.
Journal Article
A comparison of nonlinear mixed models and response to selection of tick-infestation on lambs
by
Varona, Luis
,
Grøva, Lise
,
Olesen, Ingrid
in
Anaplasma phagocytophilum
,
Anaplasma phagocytophilum - pathogenicity
,
Animal breeding
2017
Tick-borne fever (TBF) is stated as one of the main disease challenges in Norwegian sheep farming during the grazing season. TBF is caused by the bacterium Anaplasma phagocytophilum that is transmitted by the tick Ixodes ricinus. A sustainable strategy to control tick-infestation is to breed for genetically robust animals. In order to use selection to genetically improve traits we need reliable estimates of genetic parameters. The standard procedures for estimating variance components assume a Gaussian distribution of the data. However, tick-count data is a discrete variable and, thus, standard procedures using linear models may not be appropriate. Thus, the objectives of this study were twofold: 1) to compare four alternative non-linear models: Poisson, negative binomial, zero-inflated Poisson and zero-inflated negative binomial based on their goodness of fit for quantifying genetic variation, as well as heritability for tick-count and 2) to investigate potential response to selection against tick-count based on truncation selection given the estimated genetic parameters from the best fit model. Our results showed that zero-inflated Poisson was the most parsimonious model for the analysis of tick count data. The resulting estimates of variance components and high heritability (0.32) led us to conclude that genetic determinism is relevant on tick count. A reduction of the breeding values for tick-count by one sire-dam genetic standard deviation on the liability scale will reduce the number of tick counts below an average of 1. An appropriate breeding scheme could control tick-count and, as a consequence, probably reduce TBF in sheep.
Journal Article
Identification of Borrelia protein candidates in mouse skin for potential diagnosis of disseminated Lyme borreliosis
by
Jaulhac, Benoît
,
Ehret-Sabatier, Laurence
,
Barthel, Cathy
in
631/326/1320
,
692/699/255
,
Adrenal Cortex Hormones - pharmacology
2017
In vector-borne diseases, the skin plays an essential role in the transmission of vector-borne pathogens between the vertebrate host and blood-feeding arthropods and in pathogen persistence.
Borrelia burgdorferi
sensu lato is a tick-borne bacterium that causes Lyme borreliosis (LB) in humans. This pathogen may establish a long-lasting infection in its natural vertebrate host where it can persist in the skin and some other organs. Using a mouse model, we demonstrate that
Borrelia
targets the skin regardless of the route of inoculation, and can persist there at low densities that are difficult to detect via qPCR, but that were infective for blood-feeding ticks. Application of immunosuppressive dermocorticoids at 40 days post-infection (PI) significantly enhanced the
Borrelia
population size in the mouse skin. We used non-targeted (Ge-LC-MS/MS) and targeted (SRM-MS) proteomics to detect several
Borrelia
-specific proteins in the mouse skin at 40 days PI. Detected
Borrelia
proteins included flagellin, VlsE and GAPDH. An important problem in LB is the lack of diagnosis methods capable of detecting active infection in humans suffering from disseminated LB. The identification of
Borrelia
proteins in skin biopsies may provide new approaches for assessing active infection in disseminated manifestations.
Journal Article
Associations of passerine birds, rabbits, and ticks with Borrelia miyamotoi and Borrelia andersonii in Michigan, U.S.A
by
Keith, Rich
,
Sidge, Jennifer L
,
Walker, Edward D
in
Animals
,
anthropogenic activities
,
Arachnids
2012
BACKGROUND: Wild birds contribute to maintenance and dissemination of vectors and microbes, including those that impact human, domestic animal, and wildlife health. Here we elucidate roles of wild passerine birds, eastern cottontail rabbits (Sylvilagus floridanus), and Ixodes dentatus ticks in enzootic cycles of two spirochetes, Borrelia miyamotoi and B. andersonii in a region of Michigan where the zoonotic pathogen B. burgdorferi co-circulates. METHODS: Over a four-year period, wild birds (n = 19,631) and rabbits (n = 20) were inspected for tick presence and ear tissue was obtained from rabbits. Samples were tested for Borrelia spirochetes using nested PCR of the 16S-23S rRNA intergenic spacer region (IGS) and bidirectional DNA sequencing. Natural xenodiagnosis was used to implicate wildlife reservoirs. RESULTS: Ixodes dentatus, a tick that specializes on birds and rabbits and rarely bites humans, was the most common tick found, comprising 86.5% of the 12,432 ticks collected in the study. The relapsing fever group spirochete B. miyamotoi was documented for the first time in ticks removed from wild birds (0.7% minimum infection prevalence; MIP, in I. dentatus), and included two IGS strains. The majority of B. miyamotoi-positive ticks were removed from Northern Cardinals (Cardinalis cardinalis). Borrelia andersonii infected ticks removed from birds (1.6% MIP), ticks removed from rabbits (5.3% MIP), and rabbit ear biopsies (5%) comprised twelve novel IGS strains. Six species of wild birds were implicated as reservoirs for B. andersonii. Frequency of I. dentatus larval and nymphal co-feeding on birds was ten times greater than expected by chance. The relatively well-studied ecology of I. scapularis and the Lyme disease pathogen provides a context for understanding how the phenology of bird ticks may impact B. miyamotoi and B. andersonii prevalence and host associations. CONCLUSIONS: Given the current invasion of I. scapularis, a human biting species that serves as a bridge vector for Borrelia spirochetes, human exposure to B. miyamotoi and B. andersonii in this region may increase. The presence of these spirochetes underscores the ecological complexity within which Borrelia organisms are maintained and the need for diagnostic tests to differentiate among these organisms.
Journal Article