Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
112 result(s) for "Janzen-Connell hypothesis"
Sort by:
Effects of soil microbes on plant competition
Growing evidence shows that soil microbes affect plant coexistence in a variety of systems. However, since these systems vary in the impacts microbes have on plants and in the ways plants compete with each other, it is challenging to integrate results into a general predictive theory. To this end, we suggest that the concepts of niche and fitness difference from modern coexistence theory should be used to contextualize how soil microbes contribute to plant coexistence. Synthesizing a range of mechanisms under a general plant–soil microbe interaction model, we show that, depending on host specificity, both pathogens and mutualists can affect the niche difference between competing plants. However, we emphasize the need to also consider the effect of soil microbes on plant fitness differences, a role often overlooked when examining their role in plant coexistence. Additionally, since our framework predicts that soil microbes modify the importance of plant–plant competition relative to other factors for determining the outcome of competition, we suggest that experimental work should simultaneously quantify microbial effects and plant competition. Thus, we propose experimental designs that efficiently measure both processes and show how our framework can be applied to identify the underlying drivers of coexistence. Using an empirical case study, we demonstrate that the processes driving coexistence can be counterintuitive, and that our general predictive framework provides a better way to identify the true processes through which soil microbes affect coexistence.
Phosphorus limitation, soil‐borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands
507 I. 507 II. 509 III. 510 IV. 510 V. 512 VI. 516 VII. 518 518 References 518 SUMMARY: Hyperdiverse forests occur in the lowland tropics, whereas the most species‐rich shrublands are found in regions such as south‐western Australia (kwongan) and South Africa (fynbos). Despite large differences, these ecosystems share an important characteristic: their soils are strongly weathered and phosphorus (P) is a key growth‐limiting nutrient. Soil‐borne pathogens are increasingly being recognized as drivers of plant diversity in lowland tropical rainforests, but have received little attention in species‐rich shrublands. We suggest a trade‐off in which the species most proficient at acquiring P have ephemeral roots that are particularly susceptible to soil‐borne pathogens. This could equalize out the differences in competitive ability among co‐occurring species in these ecosystems, thus contributing to coexistence. Moreover, effective protection against soil‐borne pathogens by ectomycorrhizal (ECM) fungi might explain the occurrence of monodominant stands of ECM trees and shrubs amongst otherwise species‐rich communities. We identify gaps in our knowledge which need to be filled in order to evaluate a possible link between P limitation, fine root traits, soil‐borne pathogens and local plant species diversity. Such a link may help to explain how numerous plant species can coexist in hyperdiverse rainforests and shrublands, and, conversely, how monodominant stands can develop in these ecosystems.
Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest
1. Ecologists have long recognized that plant performance is affected by the density and composition of neighbouring individuals. With the advent of highly resolved species-level phylogenies, it has become possible to test whether such density-dependent neighbourhood interactions are also phylogenetically dependent. Most studies of density dependence have focused on a single life stage; however, the relative importance of different neighbourhood interactions may shift over the lifetime of an individual. 2. We examined effects of conspecific neighbour density, heterospecific neighbour density and average phylogenetic relatedness of heterospecific neighbours on the survival of seedlings, saplings, juveniles and adult trees of 29 focal tree species using long-term, spatially explicit forest dynamics data and a highly resolved DNA barcode phylogeny from the tropical forest of Barro Colorado Island (BCI), Panama. 3. Our results show a decline in the strength of conspecific negative density dependence across life stages: strong negative conspecific neighbour effects at early life stages gave way to weak positive conspecific neighbour effects for adult trees. In contrast, the effect of heterospecific neighbour density on survival showed no clear trend with life stage. 4. We found evidence of phylogenetic density dependence in the BCI forest, with a significant negative impact of neighbourhood relatedness on focal tree survival, but only for later life stages. In contrast to studies from other tropical forests, neighbourhood relatedness had a significant positive effect on seedling survival. 5. Furthermore, we found that focal species varied much more widely in their sensitivity to conspecific neighbour density than in their reactions to heterospecific neighbour density or phylogenetic relatedness. 6. Synthesis. Overall, our results demonstrate that both conspecific density dependence and phylogenetic density dependence influence tropical tree survival, but that their relative importance varies with life stage and among species. Our study highlights the need to incorporate multiple life stages and multiple species when assessing the factors contributing to individual survival and species coexistence for long-lived organisms.
Exposure to the leaf litter microbiome of healthy adults protects seedlings from pathogen damage
It is increasingly recognized that microbiota affect host health and physiology. However, it is unclear what factors shape microbiome community assembly in nature, and how microbiome assembly can be manipulated to improve host health. All plant leaves host foliar endophytic fungi, which make up a diverse, environmentally acquired fungal microbiota. Here, we experimentally manipulated assembly of the cacao tree (Theobroma cacao) fungal microbiome in nature and tested the effect of assembly outcome on host health. Using next-generation sequencing, as well as culture-based methods coupled with Sanger sequencing, we found that manipulating leaf litter exposure and location within the forest canopy significantly altered microbiome composition in cacao. Exposing cacao seedlings to leaf litter from healthy conspecific adults enriched the seedling microbiome with Colletotrichum tropicale, a fungal endophyte known to enhance pathogen resistance of cacao seedlings by upregulating host defensive pathways. As a result, seedlings exposed to healthy conspecific litter experienced reduced pathogen damage. Our results link processes that affect the assembly and composition of microbiome communities to their functional consequences for host success, and have broad implications for understanding plant–microbe interactions. Deliberate manipulation of the plant–fungal microbiome also has potentially important applications for cacao production and other agricultural systems in general.
Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests
Recent studies suggest that the mycorrhizal type associated with tree species is an important trait influencing ecological processes such as response to environmental conditions and conspecific negative density dependence (CNDD). However, we lack a general understanding of how tree mycorrhizal type influences CNDD strength and the resulting patterns of species abundance and richness at larger spatial scales. We assessed 305 species across 15 large, stem-mapped, temperate forest dynamics plots in Northeastern China and North America to explore the relationships between tree mycorrhizal type and CNDD, species abundance, and species richness at a regional scale. Tree species associated with arbuscular mycorrhizal (AM) fungi showed a stronger CNDD and a more positive relationship with species abundance than did tree species associated with ectomycorrhizal (ECM) fungi. For each plot, both basal area and stem abundance of AM tree species was lower than that of ECM tree species, suggesting that AM tree species were rarer than ECM tree species. Finally, ECM tree dominance showed a negative effect on plant richness across plots. These results provide evidence that tree mycorrhizal type plays an important role in influencing CNDD and species richness, highlighting this trait as an important factor in structuring plant communities in temperate forests.
How does habitat filtering affect the detection of conspecific and phylogenetic density dependence?
Conspecific negative density dependence (CNDD) has been recognized as a key mechanism underlying species coexistence, especially in tropical forests. Recently, some studies have reported that seedling survival is also negatively correlated with the phylogenetic relatedness between neighbors and focal individuals, termed phylogenetic negative density dependence (PNDD). In contrast to CNDD or PNDD, shared habitat requirements between closely related individuals are thought to be a cause of observed positive effects of closely related neighbors, which may affect the strength and detectability of CNDD or PNDD. In order to investigate the relative importance of these mechanisms for tropical tree seedling survival, we used generalized linear mixed models to analyze how the survival of more than 10 000 seedlings of woody plant species related to neighborhood and habitat variables in a tropical rainforest in southwest China. By comparing models with and without habitat variables, we tested how habitat filtering affected the detection of CNDD and PNDD. The best‐fitting model suggested that CNDD and habitat filtering played key roles in seedling survival, but that, contrary to our expectations, phylogenetic positive density dependence (PPDD) had a distinct and important effect. While habitat filtering affected the detection of CNDD by decreasing its apparent strength, it did not explain the positive effects of closely related neighbors. Our results demonstrate that a failure to control for habitat variables and phylogenetic relationships may obscure the importance of conspecific and heterospecific neighbor densities for seedling survival.
Guild-specific patterns of species richness and host specialization in plant-herbivore food webs from a tropical forest
1. The extent to which plant-herbivore feeding interactions are specialized is key to understand the processes maintaining the diversity of both tropical forest plants and their insect herbivores. However, studies documenting the full complexity of tropical plant-herbivore food webs are lacking. 2. We describe a complex, species-rich plant-herbivore food web for lowland rain forest in Papua New Guinea, resolving 6818 feeding links between 224 plant species and 1490 herbivore species drawn from 11 distinct feeding guilds. By standardizing sampling intensity and the phylogenetic diversity of focal plants, we are able to make the first rigorous and unbiased comparisons of specificity patterns across feeding guilds. 3. Specificity was highly variable among guilds, spanning almost the full range of theoretically possible values from extreme trophic generalization to monophagy. 4. We identify guilds of herbivores that are most likely to influence the composition of tropical forest vegetation through density-dependent herbivory or apparent competition. 5. We calculate that 251 herbivore species (48 of them unique) are associated with each rain forest tree species in our study site so that the ~200 tree species coexisting in the lowland rain forest community are involved in ~50 000 trophic interactions with ~9600 herbivore species of insects. This is the first estimate of total herbivore and interaction number in a rain forest plant-herbivore food web. 6. A comprehensive classification of insect herbivores into 24 guilds is proposed, providing a framework for comparative analyses across ecosystems and geographical regions.
Proximity to roads disrupts rodents' contributions to seed dispersal services and subsequent recruitment dynamics
1. Seed dispersal and subsequent recruitment dynamics play a crucially important role in regulating species coexistence and structuring tree diversity in diverse forests. Wildlife, which can dually shape the tree recruitment process by simultaneously functioning as natural enemies and seed dispersers, are undergoing widespread changes in population and behaviour due to the detrimental effects of expanding global road networks. However, the impact of these changes on recruitment dynamics through the alteration of seed dispersal processes remains understudied. 2. Here, we assessed how roads affect animal-mediated recruitment dynamics from the seed to adult stages of trees using a ubiquitous vertebrate-seed model: rodents and acorns. To quantify the degree to which proximity to a road alters seed dispersal and regulates subsequent recruitment dynamics, we conducted seed dispersal and prédation experiments, and investigated the natural recruitment of a dominant tree species (Quercus aliena) from September 2009 to July 2012 in a subtropical forest of central China. 3. Roads caused a decreased seed dispersal distance and increasing larder hoarding, demonstrating a weakened contribution of rodents to seed dispersal services. These patterns were stronger in the masting year than in the non-masting year. Correspondingly, seedlings, saplings and adult trees had higher densities near roads than far from roads. Near roads, recruit transition rates (i.e. seedling-to-sapling and sapling-to-juvenile) were low, and the influential strength of conspecific adult density was weakened over these recruit transitions, indicating that space limitation and lottery competition, not conspecific negative density-dependent effects, approximately determined the near-road recruitment process. Furthermore, most adults near roads were young, and their ages matched the road ages. 4. Synthesis, Roads diminished animal-mediated seed dispersal services and disrupted subsequent recruitment dynamics in Quercus aliena populations, thus weakening the key process promoting diversity in forest ecosystems. Given that these animal-regulated roles in recruitment dynamics are widespread stabilizing forces for tree coexistence, our findings suggest that the ubiquity of roads and their continued expansion will contribute to the increase in forests dominated by a relatively low number of species. Consequently, the growing expansion of road networks will ultimately cause profound changes in community composition and structure across diverse forests worldwide.
Resolving the paradox of clumped seed dispersal
One of the hypothesized benefits of seed dispersal is to escape density- and distance-responsive, host-specific, natural enemies near maternal plants where conspecific seed and seedling densities are high. Such high conspecific neighbor densities typically result in lower offspring growth and survival (i.e., negative density-dependent effects), yet many dispersal modes result in clumped seed distributions. New World leaf-nosed bats transport fruits to their feeding roosts and deposit seeds, thereby creating high-density seed/seedling patches beneath feeding roosts in heterospecific trees away from maternal trees, which seemingly nullifies a key benefit of seed dispersal. Such dispersal may still be adaptive if negative density-dependent effects are reduced under feeding roosts or if the benefit of being dispersed away from maternal trees outweighs negative effects of conspecific seed/seedling density below roosts. We mapped the entire post-germination population of a bat-dispersed tree species Calophyllum longifolium (Calophyllaceae) in a 50-ha plot on Barro Colorado Island, Panama in each of three successive years. We tested two hypotheses: (1) distance-dependent effects are stronger than density-dependent effects on seedling performance because seedlings far from conspecific adults are more likely to escape natural enemies even when at high densities and (2) negative density-dependent effects will be reduced far from vs. near conspecific adults. Density and distance were naturally decoupled, as expected. However, in contrast to our expectation, we found positive density effects on seedling survival and density-dependent effects did not differ with distance from conspecific adults. Both density and distance had positive effects on seedling survival when considered together, while only year had a significant effect on seedling growth. Thus, both being dispersed under bat feeding roosts and escaping the vicinity of conspecific adults were beneficial for C. longifolium seedling survival, supporting the directed dispersal and escape hypotheses, respectively. Despite resulting in high densities of conspecific seedlings, favorable habitat under bat feeding roosts and lack of negative density-dependent effects appear to provide evolutionary advantages in C. longifolium.
Life histories of hosts and pathogens predict patterns in tropical fungal plant diseases
Plant pathogens affect the fitness of their hosts and maintain biodiversity. However, we lack theories to predict the type and intensity of infections in wild plants. Here we demonstrate using fungal pathogens of tropical plants that an examination of the life histories of hosts and pathogens can reveal general patterns in their interactions. Fungal infections were more commonly reported for light-demanding than for shade-tolerant species and for evergreen rather than for deciduous hosts. Both patterns are consistent with classical defence theory, which predicts lower resistance in fast-growing species and suggests that the deciduous habit can reduce enemy populations. In our literature survey, necrotrophs were found mainly to infect shade-tolerant woody species whereas biotrophs dominated in light-demanding herbaceous hosts. Far-red signalling and its inhibitory effects on jasmonic acid signalling are likely to explain this phenomenon. Multiple changes between the necrotrophic and the symptomless endophytic lifestyle at the ecological and evolutionary scale indicate that endophytes should be considered when trying to understand large-scale patterns in the fungal infections of plants. Combining knowledge about the molecular mechanisms of pathogen resistance with classical defence theory enables the formulation of testable predictions concerning general patterns in the infections of wild plants by fungal pathogens.