Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
4,848 result(s) for "Joint dynamics"
Sort by:
The Effect of Functional Biomechanics Garment for Walking
The purpose of this study was to investigate the effects of a functional biomechanics garment (FBG) with a lower extremity assist function. 32 healthy male participants were included in this study. Participants were divided into an FBG with taping function group (FBG group) and a compression garment group (CG group). Cadence (steps/min), step length (m), and usual walking speed (m/s) were measured as spatio-temporal data. Kinetics, kinematics data, and dynamic joint stiffness (DJS) of the lower extremity were calculated using a three-dimensional gait analysis system. The FBG group showed significantly faster walking speed (FBG, 1.54 ± 0.12 m/s; CG, 1.42 ± 0.15 m/s, p < 0.05) and reduced hip DJS in terminal stance (FBG, 0.033 ± 0.014 Nm/kg/degree; CG: 0.049 ± 0.016 Nm/kg/degree, p < 0.05) compared to the CG group. The FBG decreased hip DJS in the terminal stance and affected walking speed. The passive elastic moment generated by the high elasticity part of the hip joint front in the FBG supported the internal hip flexion moment. Therefore, our FBG has a biomechanical effect. The FBG may be useful as a tool to promote health activities.
Multi-Representation Joint Dynamic Domain Adaptation Network for Cross-Database Facial Expression Recognition
In order to obtain more fine-grained information from multiple sub-feature spaces for domain adaptation, this paper proposes a novel multi-representation joint dynamic domain adaptation network (MJDDAN) and applies it to achieve cross-database facial expression recognition. The MJDDAN uses a hybrid structure to extract multi-representation features and maps the original facial expression features into multiple sub-feature spaces, aligning the expression features of the source domain and target domain in multiple sub-feature spaces from different angles to extract features more comprehensively. Moreover, the MJDDAN proposes the Joint Dynamic Maximum Mean Difference (JD-MMD) model to reduce the difference in feature distribution between different subdomains by simultaneously minimizing the maximum mean difference and local maximum mean difference in each substructure. Three databases, including eNTERFACE, FABO, and RAVDESS, are used to design a large number of cross-database transfer learning facial expression recognition experiments. The accuracy of emotion recognition experiments with eNTERFACE, FABO, and RAVDESS as target domains reach 53.64%, 43.66%, and 35.87%, respectively. Compared to the best comparison method chosen in this article, the accuracy rates were improved by 1.79%, 0.85%, and 1.02%, respectively.
Surgical techniques for management of acromioclavicular joint separations: review and update for radiologists
Imaging plays a central role in the postoperative management of acromioclavicular (AC) joint separations. There are more than 150 described techniques for the surgical management of AC joint injuries. These procedures can be categorized as varying combinations of the following basic techniques: a) soft-tissue repair, b) trans-articular AC joint fixation, c) coracoclavicular (CC) fixation, d) non-anatomic reconstruction of the CC ligaments, e) anatomic reconstruction of the CC ligaments, f) distal clavicle resection, and g) dynamic muscle transfer. The goals of this article are to describe the basic techniques for the surgical management of AC joint separations with an emphasis on technique-specific complications and postoperative imaging assessment.
Effects of Walking Speed and Added Mass on Hip Joint Quasi-Stiffness in Healthy Young and Middle-Aged Adults
Joint quasi-stiffness has been often used to inform exoskeleton design. Further understanding of hip quasi-stiffness is needed to design hip exoskeletons. Of interest are wearer responses to walking speed changes with added mass of the exoskeleton. This study analyzed hip quasi-stiffness at 3 walking speed levels and 9 added mass distributions among 13 young and 16 middle-aged adults during mid-stance hip extension and late-stance hip flexion. Compared to young adults, middle-aged adults maintained a higher quasi-stiffness with a smaller range. For a faster walking speed, both age groups increased extension and flexion quasi-stiffness. With mass evenly distributed on the pelvis and thighs or biased to the pelvis, both groups maintained or increased extension quasi-stiffness. With mass biased to the thighs, middle-aged adults maintained or decreased extension quasi-stiffness while young adults increased it. Young adults decreased flexion quasi-stiffness with added mass but not in any generalizable pattern with mass amounts or distributions. Conversely, middle-aged adults maintained or decreased flexion quasi-stiffness with even distribution on the pelvis and thighs or biased to the pelvis, while no change occurred if biased to the thighs. In conclusion, these results can guide the design of a hip exoskeleton’s size and mass distribution according to the intended user’s age.
Lower extremity joint compensatory effects during the first recovery step following slipping and stumbling perturbations in young and older subjects
Background The lower extremity may play a crucial role in compensating for gait perturbations. The study aimed to explore the mechanism of perturbation compensation by investigating the gait characteristics and lower extremity joint moment effects in young (YS) and older subjects (OS) during the first recovery gait following slipping (slipping_Rec1) and stumbling (stumbling_Rec1). Method An automatic perturbation-triggered program was developed using D-Flow software based on the Gait Real-time Analysis Interactive Lab to induce the two aforementioned perturbations. Marker trajectories and ground reaction forces were recorded from 15 healthy YS (age: 26.53 ± 3.04 years; body height: 1.73 ± 0.07 m; body mass: 66.81 ± 11.44 kg) and 15 healthy OS (age: 68.33 ± 3.29 years; body height: 1.76 ± 0.10 m; body mass: 81.13 ± 13.99 kg). The Human Body Model was used to compute the variables of interest. One-way analysis of variance and independent samples t-test statistical analyses were performed. Results In slipping_Rec1 and stumbling_Rec1, the change in gait pattern was mainly reflected in a significant increase in step width, no alterations in step length and stance/swing ratio were revealed. Based on perturbed task specificity, lower extremity joint moments increased or decreased at specific phases of the gait cycle in both YS and OS in slipping_Rec1 and stumbling_Rec1 compared to normal gait. The two perturbed gaits reflected the respective compensatory requirements for the lower extremity joints, with both sagittal and frontal joint moments producing compensatory effects. The aging effect was not reflected in the gait pattern, but rather in the hip extension moment during the initial stance of slipping_Rec1. Conclusions Slipping appears to be more demanding for gait recovery than stumbling. Gait perturbation compensatory mechanisms for OS should concentrate on ankle strategy in the frontal plane and counter-rotation strategy around the hip.
Methodology for biomechanical investigation of implant malpositioning in total knee arthroplasty using a six degree of freedom joint simulator
The implantation of total knee replacements is an effective treatment for advanced degenerative knee joint diseases. Implant positioning relative to the bones affects the loads occurring in the artificial joint, joint stability, and postoperative functionality. Variance in implant positioning during the surgical implantation of a total knee replacement cannot be entirely ruled out. By simulating implant malpositioning in an experimental setting, particularly critical cases of malalignment can be identified, from which guidelines for orthopedic surgeons can be derived. The AMTI VIVO™ six degree of freedom joint simulator allows reproducible preclinical testing of joint endoprostheses under specific kinematic and loading conditions. It features a virtual ligament model that defines up to 100 ligament fibers between the articulating components. This paper presents a method to investigate the effect of different implant positions on the biomechanics of the knee after total knee arthroplasty. For this, the VIVO joint simulator requires no modification of the physical setup by moving virtual ligament insertion points relative to the bone. As a proof of concept, exemplary shifts and rotations of the femoral and tibial implant components are performed, and dynamic results are compared to a musculoskeletal multibody digital twin and findings from the literature. Video Abstract.
Patient-reported impairment following TKA is reduced when a computationally simulated predicted ideal alignment is achieved
Purpose Joint dynamics following Total Knee Arthroplasty (TKA) may influence patient-reported outcome. Simulations allow many knee alignment approaches to a single patient to be considered prior to surgery. The simulated kinematics can be matched to patient-reported outcome to predict kinematic patterns most likely to give the best outcome. This study aims to validate one such previously developed algorithm based on a simulated deep knee bend (the Dynamic Knee Score, DKS). Methods 1074 TKA patients with pre- and post-operative Computerised Tomography (CT) scans and 12-month post-operative Knee Injury and Osteoarthritis Outcomes (KOOS) Scores were identified from the 360 Med Care Joint Registry. Landmarking and registration of implant position was performed on all CT scans, and each of the achieved TKAs was computationally simulated and received a predictive outcome score from the DKS. In addition, a set of potential alternative surgical plans which might have been followed were simulated. Comparison of patient-reported issues and DKS score was evaluated in a counter-factual study design. Results Patient-reported impairment with the knee catching and squatting was shown to be 30% lower ( p  = 0.005) and 22% lower ( p  = 0.026) in patients where the best possible DKS result was the one surgically achieved. Similar findings were found relating attainment of the best tibial slope and posterior femoral resection DKS plans to patient-reported difficulty straightening the knee (40% less likely, p  < 0.001) and descending stairs (35% less likely, p  = 0.006). Conclusion The DKS has been shown to correlate with presence of patient-reported impairments post-TKA and the resultant algorithm can be applied in a pre-operative planning setting. Outcome optimization in the future may come from patient-specific selection of an alignment strategy and simulations may be a technological enabler of this trend. Level of evidence. III (Retrospective Cohort Study).
Joint dynamics and intra-subject variability during countermovement jumps in children and adults
The present study investigated lower limb joint work, lower limb joint energy transport and intra-subject variation of the joint dynamics during countermovement jumps in children and adults. Twelve healthy men and eleven healthy boys performed ten maximal countermovement jumps. Three dimensional kinematics and kinetics were recorded in synchrony. Hip, knee and ankle joint eccentric and concentric work, joint energy transfer, intra-subject variation of joint moment, joint power and joint moment components were calculated. The children had lower eccentric and concentric hip work and lower eccentric knee work but no group difference was observed in the concentric knee joint work and ankle joint work. Eccentric hip and knee joint energy transfer and concentric hip joint energy transfer were higher in adults. The children had higher intra-subject variation in the eccentric and concentric hip joint work, hip joint moment and hip and knee joint power. Higher intra-subject variation was observed in horizontal joint reaction force components for the children and higher intra-subject variation in the segment angular inertia components was observed for the adults. The joint dynamics of children during countermovement jumps were less efficient in producing proximal joint work, transferring energy through joint centres and characterized by a higher intra-subject variation.
Neural Network Design for Manipulator Collision Detection Based Only on the Joint Position Sensors
In this paper, a multilayer feedforward neural network (NN) is designed and trained, for human–robot collisions detection, using only the intrinsic joint position sensors of a manipulator. The topology of one NN is designed considering the coupled dynamics of the robot and trained, with and without external contacts, by Levenberg–Marquardt algorithm to detect unwanted collisions of the human operator with the manipulator and the link that is collided. The proposed approach could be applied to any industrial robot, where only the joint position signals are available. The designed NN is compared quantitatively and qualitatively with an NN, where both the intrinsic joint position and the torque sensors of the manipulator are used. The proposed method is evaluated experimentally with the KUKA LWR manipulator, which is considered as an example of the collaborative robots, using two of its joints in a planar horizontal motion. The results illustrate that the developed system is efficient and fast to detect the collisions and identify the collided link.
Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes
Variance of community abundance will be reduced relative to its theoretical maximum whenever population densities fluctuate asynchronously. Fishing communities and mobile predators can switch among fish species and/or fishing locations with asynchronous dynamics, thereby buffering against variable resource densities (termed ‘portfolio effects’, PEs). However, whether variation among species or locations represent the dominant contributor to PE remains relatively unexplored. Here, we apply a spatio-temporal model to multidecadal time series (1982–2015) for 20 bottom-associated fishes in seven marine ecosystems. For each ecosystem, we compute the reduction in variance over time in total biomass relative to its theoretical maximum if species and locations were perfectly correlated (total PE). We also compute the reduction in variance due to asynchrony among species at each location (species PE) or the reduction due to asynchrony among locations for each species (spatial PE). We specifically compute total, species and spatial PE in 10-year moving windows to detect changes over time. Our analyses revealed that spatial PE are stronger than species PE in six of seven ecosystems, and that ecosystems where species PE is constant over time can exhibit shifts in locations that strongly contribute to PE. We therefore recommend that spatial and total PE be monitored as ecosystem indicators representing risk exposure for human and natural consumers.