Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
48
result(s) for
"Kan extension"
Sort by:
Using Kan Extensions to Motivate the Design of a Surprisingly Effective Unsupervised Linear SVM on the Occupancy Dataset
2024
Recent research has suggested that category theory can provide useful insights into the field of machine learning (ML). One example is improving the connection between an ML problem and the design of a corresponding ML algorithm. A tool from category theory called a Kan extension is used to derive the design of an unsupervised anomaly detection algorithm for a commonly used benchmark, the Occupancy dataset. Achieving an accuracy of 93.5% and an ROCAUC of 0.98, the performance of this algorithm is compared to state-of-the-art anomaly detection algorithms tested on the Occupancy dataset. These initial results demonstrate that category theory can offer new perspectives with which to attack problems, particularly in making more direct connections between the solutions and the problem’s structure.
Journal Article
The Categorical Basis of Dynamical Entropy
2024
Many branches of theoretical and applied mathematics require a quantifiable notion of complexity. One such circumstance is a topological dynamical system—which involves a continuous self-map on a metric space. There are many notions of complexity one can assign to the repeated iterations of the map. One of the foundational discoveries of dynamical systems theory is that these have a common limit, known as the topological entropy of the system. We present a category-theoretic view of topological dynamical entropy, which reveals that the common limit is a consequence of the structural assumptions on these notions. One of the key tools developed is that of a qualifying pair of functors, which ensure a limit preserving property in a manner similar to the sandwiching theorem from Real Analysis. It is shown that the diameter and Lebesgue number of open covers of a compact space, form a qualifying pair of functors. The various notions of complexity are expressed as functors, and natural transformations between these functors lead to their joint convergence to the common limit.
Journal Article
Injective types in univalent mathematics
2021
We investigate the injective types and the algebraically injective types in univalent mathematics, both in the absence and in the presence of propositional resizing. Injectivity is defined by the surjectivity of the restriction map along any embedding, and algebraic injectivity is defined by a given section of the restriction map along any embedding. Under propositional resizing axioms, the main results are easy to state: (1) Injectivity is equivalent to the propositional truncation of algebraic injectivity. (2) The algebraically injective types are precisely the retracts of exponential powers of universes. (2a) The algebraically injective sets are precisely the retracts of powersets. (2b) The algebraically injective (n+1)-types are precisely the retracts of exponential powers of universes of n-types. (3) The algebraically injective types are also precisely the retracts of algebras of the partial-map classifier. From (2) it follows that any universe is embedded as a retract of any larger universe. In the absence of propositional resizing, we have similar results that have subtler statements which need to keep track of universe levels rather explicitly, and are applied to get the results that require resizing.
Journal Article
Cellular automata and Kan extensions
by
Maignan, Luidnel
,
Spicher, Antoine
,
Fernandez, Alexandre
in
Automata theory
,
Cellular automata
,
Neighborhoods
2023
In this paper, we formalize precisely the sense in which the application of a cellular automaton to partial configurations is a natural extension of its local transition function through the categorical notion of Kan extension. In fact, the two possible ways to do such an extension and the ingredients involved in their definition are related through Kan extensions in many ways. These relations provide additional links between computer science and category theory, and also give a new point of view on the famous Curtis–Hedlund theorem of cellular automata from the extended topological point of view provided by category theory. These links also allow to relatively easily generalize concepts pioneered by cellular automata to arbitrary kinds of possibly evolving spaces. No prior knowledge of category theory is assumed for the most part.
Journal Article
Fast Left Kan Extensions Using the Chase
by
Wisnesky, Ryan
,
Meyers, Joshua
,
Spivak, David I
in
Algorithms
,
Automation
,
Cartesian coordinates
2022
We show how computation of left Kan extensions can be reduced to computation of free models of cartesian (finite-limit) theories. We discuss how the standard and parallel chase compute weakly free models of regular theories and free models of cartesian theories and compare the concept of “free model” with a similar concept from database theory known as “universal model”. We prove that, as algorithms for computing finite-free models of cartesian theories, the standard and parallel chase are complete under fairness assumptions. Finally, we describe an optimized implementation of the parallel chase specialized to left Kan extensions that achieves an order of magnitude improvement in our performance benchmarks compared to the next fastest left Kan extension algorithm we are aware of.
Journal Article
Higher topos theory
2009
Higher category theory is generally regarded as technical and forbidding, but part of it is considerably more tractable: the theory of infinity-categories, higher categories in which all higher morphisms are assumed to be invertible. In Higher Topos Theory, Jacob Lurie presents the foundations of this theory, using the language of weak Kan complexes introduced by Boardman and Vogt, and shows how existing theorems in algebraic topology can be reformulated and generalized in the theory's new language. The result is a powerful theory with applications in many areas of mathematics.
Institution Morphisms
by
Goguen, Joseph
,
Roşu, Grigore
in
Applied sciences
,
Computer science; control theory; systems
,
Exact sciences and technology
2002
Institutions formalise the intuitive notion of logical system, including syntax, semantics, and the relation of satisfaction between them. Our exposition emphasises the natural way that institutions can support deduction on sentences, and inclusions of signatures, theories, etc.; it also introduces terminology to clearly distinguish several levels of generality of the institution concept. A surprising number of different notions of morphism have been suggested for forming categories with institutions as objects, and an amazing variety of names have been proposed for them. One goal of this paper is to suggest a terminology that is uniform and informative to replace the current chaotic nomenclature; another goal is to investigate the properties and interrelations of these notions in a systematic way. Following brief expositions of indexed categories, diagram categories, twisted relations and Kan extensions, we demonstrate and then exploit the duality between institution morphisms in the original sense of Goguen and Burstall, and the ‘plain maps’ of Meseguer, obtaining simple uniform proofs of completeness and cocompleteness for both resulting categories. Because of this duality, we prefer the name ‘comorphism’ over ‘plain map’; moreover, we argue that morphisms are more natural than comorphisms in many cases. We also consider ‘theoroidal’ morphisms and comorphisms, which generalise signatures to theories, based on a theoroidal institution construction, finding that the ‘maps’ of Meseguer are theoroidal comorphisms, while theoroidal morphisms are a new concept. We introduce ‘forward’ and ‘semi-natural’ morphisms, and develop some of their properties. Appendices discuss institutions for partial algebra, a variant of order sorted algebra, two versions of hidden algebra, and a generalisation of universal algebra; these illustrate various points in the main text. A final appendix makes explicit a greater generality for the institution concept, clarifies certain details and proves some results that lift institution theory to this level.
Journal Article
An equivariant smash spectral sequence and an unstable box product
1999
Let GG be a finite group. We construct a first quadrant spectral sequence which converges to the equivariant homotopy groups of the smash product X∧YX \\wedge Y for suitably connected, based GG-CW complexes XX and YY. The E2E^2 term is described in terms of a tensor product functor of equivariant Π\\Pi-algebras. A homotopy version of the non-equivariant Künneth theorem and the equivariant suspension theorem of Lewis are both shown to be special cases of the corner of the spectral sequence. We also give a categorical description of this tensor product functor which is analogous to the description in equivariant stable homotopy theory of the box product of Mackey functors. For this reason, the tensor product functor deserves to be called an “unstable box product”.
Journal Article
Homotopy in functor categories
1982
If C{\\mathbf {C}} is a small category enriched over topological spaces the category JC{\\mathcal {J}^{\\mathbf {C}}} of continuous functors from C{\\mathbf {C}} into topological spaces admits a family of homotopy theories associated with closed subcategories of C{\\mathbf {C}}. The categories JC{\\mathcal {J}^{\\mathbf {C}}}, for various C{\\mathbf {C}}, are connected to one another by a functor calculus analogous to the ⊗\\otimes, Hom calculus for modules over rings. The functor calculus and the several homotopy theories may be articulated in such a way as to define an analogous functor calculus on the homotopy categories. Among the functors so described are homotopy limits and colimits and, more generally, homotopy Kan extensions. A by-product of the method is a generalization to functor categories of E. H. Brown’s representability theorem.
Journal Article