Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
357
result(s) for
"Kemiteknik"
Sort by:
Improved vacuum dewatering of grease-proof paper utilizing a multi-slit vacuum suction box in laboratory scale
2024
Grease-proof paper is an energy-demanding paper product to manufacture, especially during refining and dewatering. Increases in energy efficiency in either stage could result in major savings. This article investigates the potential gains with addition of a stepwise progression vacuum suction box to the forming section during production. For both a lighter, 50 g/m2, and a heavier paper grade, 100 g/m2, with a pulp-drainability of 86 °SR, a stepwise progression vacuum suction box in four steps would result in increased dryness, simultaneously with decreased energy expenditure. The observed effects were higher for the lower basis weight paper (50 g/m2). Both basis weights experienced clogging of the forming fabric due to the high degree of refining. This adversely affected the dewatering rate, decreasing the amount of air pulled through the paper even when increasing the vacuum pressure. When a stepwise progression suction box in four steps was compared to a single vacuum suction box, there was a 14% increase in dryness for lighter paper, over an equal energy consumption, measured as amount of air pulled through the paper. For the 100 g/m2 paper, the increase in dryness was 3% compared to the 50 g/m2 paper run over a single vacuum suction box. The results show great promise for energy savings when utilizing stepwise progression suction box dewatering for grease-proof paper production.
Journal Article
Stroboscopic operando spectroscopy of the dynamics in heterogeneous catalysis by event-averaging
by
Boix, Virgínia
,
Shavorskiy, Andrey
,
Goodwin, Christopher
in
140/146
,
639/301/119/544
,
639/638/77/887
2021
Heterogeneous catalyst surfaces are dynamic entities that respond rapidly to changes in their local gas environment, and the dynamics of the response is a decisive factor for the catalysts’ action and activity. Few probes are able to map catalyst structure and local gas environment simultaneously under reaction conditions at the timescales of the dynamic changes. Here we use the CO oxidation reaction and a Pd(100) model catalyst to demonstrate how such studies can be performed by time-resolved ambient pressure photoelectron spectroscopy. Central elements of the method are cyclic gas pulsing and software-based event-averaging by image recognition of spectral features. A key finding is that at 3.2 mbar total pressure a metallic, predominantly CO-covered metallic surface turns highly active for a few seconds once the O
2
:CO ratio becomes high enough to lift the CO poisoning effect before mass transport limitations triggers formation of a √5 oxide.
To follow in situ and in real time how catalyst surfaces respond to gas composition changes is a challenge. This study reports on an eventaveraging method, based on cyclic gas pulsing and software-based image recognition, that overcomes the challenge for large photoelectron spectroscopy datasets.
Journal Article
The Impact of Annealing Methods on the Encapsulating Structure and Storage-Stability of Freeze-Dried Pellets of Probiotic Bacteria
by
Larsson, Emanuel
,
Palmkron, Shuai Bai
,
Bergenståhl, Björn
in
Annealing
,
Freeze drying
,
Maltodextrin
2024
ObjectiveThis paper investigates the critical role of material thickness in freeze-dried pellets for enhancing the storage stability of encapsulated bacteria. Freeze dried material of varying thicknesses obtained from different annealing durations is quantified using Scanning Electron Microscopy (SEM) and X-ray microtomography (μCT), the material thickness is then correlated to the storage stability of the encapsulated cells.MethodsA formulation comprising of sucrose, maltodextrin, and probiotic cells is quenched in liquid nitrogen to form pellets. The pellets undergo different durations of annealing before undergoing freeze-drying. The material thickness is quantified using SEM and μCT. Storage stability in both oxygen-rich and oxygen-poor environments is evaluated by measuring CFU counts and correlated with the pellet structure.ResultsThe varying annealing protocols produce a range of material thicknesses, with more extensive annealing resulting in thicker materials. Storage stability exhibits a positive correlation with material thickness, indicating improved stability with thicker materials. Non-annealed pellets exhibit structural irregularities and inconsistent storage stability, highlighting the impracticality of avoiding annealing in the freeze-drying process.ConclusionsExtensive annealing not only enhances the storage stability of probiotic products but also provides greater control over the freeze-drying process, ensuring homogeneous and reproducible products. This study underscores the importance of material thickness in freeze-dried pellets for optimizing storage stability for probiotic formulations, and emphasize the necessity of annealing as a critical step in freeze-drying quenched pellets to achieve desired structural and stability outcomes.
Journal Article
Designing Biobased Recyclable Polymers for Plastics
by
Rehnberg, Nicola
,
Nilsson, Lars J.
,
Lundmark, Stefan
in
Acids
,
Alternatives
,
biobased plastics
2020
Several concurrent developments are shaping the future of plastics. A transition to a sustainable plastics system requires not only a shift to fossil-free feedstock and energy to produce the carbon-neutral building blocks for polymers used in plastics, but also a rational design of the polymers with both desired material properties for functionality and features facilitating their recyclability. Biotechnology has an important role in producing polymer building blocks from renewable feedstocks, and also shows potential for recycling of polymers. Here, we present strategies for improving the performance and recyclability of the polymers, for enhancing degradability to monomers, and for improving chemical recyclability by designing polymers with different chemical functionalities.
Rational polymer design is important for desired functionality and recyclability.Increasing the glass transition temperature is an effective strategy for enhancing the performance and recyclability of biobased polymers.Selective polymer depolymerization and repolymerization of monomers offers an important route to plastic recycling.Microbial cells and enzymes constitute important tools for the production as well as recycling of polymers.Feedstock sustainability is a concern and CO2 will become an important alternative to biomass for fossil-free polymers.
Journal Article
Pretreatment for biorefineries: a review of common methods for efficient utilisation of lignocellulosic materials
2019
The implementation of biorefineries based on lignocellulosic materials as an alternative to fossil-based refineries calls for efficient methods for fractionation and recovery of the products. The focus for the biorefinery concept for utilisation of biomass has shifted, from design of more or less energy-driven biorefineries, to much more versatile facilities where chemicals and energy carriers can be produced. The sugar-based biorefinery platform requires pretreatment of lignocellulosic materials, which can be very recalcitrant, to improve further processing through enzymatic hydrolysis, and for other downstream unit operations. This review summarises the development in the field of pretreatment (and to some extent, of fractionation) of various lignocellulosic materials. The number of publications indicates that biomass pretreatment plays a very important role for the biorefinery concept to be realised in full scale. The traditional pretreatment methods, for example, steam pretreatment (explosion), organosolv and hydrothermal treatment are covered in the review. In addition, the rapidly increasing interest for chemical treatment employing ionic liquids and deep-eutectic solvents are discussed and reviewed. It can be concluded that the huge variation of lignocellulosic materials makes it difficult to find a general process design for a biorefinery. Therefore, it is difficult to define “the best pretreatment” method. In the end, this depends on the proposed application, and any recommendation of a suitable pretreatment method must be based on a thorough techno-economic evaluation.
Journal Article
Hardwood-derived cellulose nanofibrils and micro-fibrillated cellulose via Fenton pretreatment: Issues of fiber fragmentation and coating performance
by
Raouf, Morassa
,
Swerin, Agne
,
Sjöstrand, Björn
in
barrier
,
cellulose nano fibril (cnf)
,
Chemical Engineering
2026
A novel cellulose nano material was prepared through a controlled Fenton oxidation process utilizing hydrogen peroxide and ferrous ions. The reaction parameters enabled ferrous-catalyzed oxidation, which combined with mechanical treatment resulted in an effective fibrillation of cellulose fibers. Optical microscopy images provided a visual comparison of fiber morphology between untreated hardwood pulp and Fenton-treated samples, clearly illustrating the fibrillation effect. The samples were evaluated for fiber drainage behavior, and conclusions about accessibility and the extent of fibrillation were made. Measurements of the surface charge of the samples revealed an increase in negative charges originating from added carboxyl groups, which is essential for the dispersing and stabilization of cellulose nano fibrils and micro-fibrillated cellulose (CNF/MFC). Fourier-transform infrared spectroscopy (FTIR) confirmed the introduction of the carboxyl groups due to the Fenton treatment. The CNF/MFC material was used as paper coatings, without adding additional materials. The coated samples underwent analyses of permeability and roughness, revealing possibilities for enhancements in barrier properties and hydrophobicity. The results emphasize the ability of Fenton oxidation in generating high-quality small scale cellulosic materials with customized functionalities, underscoring their potential application in advanced coating technologies and sustainable material innovation.
Journal Article
Production and Characterization of Controlled Release Urea Using Biopolymer and Geopolymer as Coating Materials
2020
Synthetic polymers-based controlled release urea (CRU) leaves non-biodegradable coating shells when applied in soil. Several alternative green materials are used to produce CRU, but most of these studies have issues pertaining to nitrogen release longevity, process viability, and the ease of application of the finished product. In this study, we utilized tapioca starch, modified by polyvinyl alcohol and citric acid, as coating material to produce controlled release coated urea granules in a rotary fluidized bed equipment. Response surface methodology is employed for studying the interactive effect of process parameters on urea release characteristics. Statistical analysis indicates that the fluidizing air temperature and spray rate are the most influential among all five process parameters studied. The optimum values of fluidizing air temperature (80 °C), spray rate (0.13 mL/s), atomizing pressure (3.98 bar), process time (110 min), and spray temperature (70 °C) were evaluated by multi-objective optimization while using genetic algorithms in MATLAB®. Urea coated by modified-starch was double coated by a geopolymer to enhance the controlled release characteristics that produced promising results with respect to the longevity of nitrogen release from the final product. This study provides leads for the design of a fluidized bed for the scaled-up production of CRU.
Journal Article
Analysis of membrane fouling by Brunauer-Emmet-Teller nitrogen adsorption/desorption technique
by
Virtanen, Tiina
,
Al-Rudainy, Basel
,
Lopatina, Anastasiia
in
Adsorption
,
Biorefineries
,
Chemical Engineering
2020
Membrane fouling is the major factor limiting the wider applicability of the membrane-based technologies in water treatment and in separation and purification processes of biorefineries, pulp and paper industry, food industry and other sectors. Endeavors to prevent and minimize fouling requires a deep understanding on the fouling mechanisms and their relative effects. In this study, Brunauer-Emmett-Teller (BET) nitrogen adsorption/desorption technique was applied to get an insight into pore-level membrane fouling phenomena occurring in ultrafiltration of wood-based streams. The fouling of commercial polysulfone and polyethersulfone membranes by black liquor, thermomechanical pulping process water and pressurized hot-water extract was investigated with BET analysis, infrared spectroscopy, contact angle analysis and pure water permeability measurements. Particular emphasis was paid to the applicability of BET for membrane fouling characterization. The formation of a fouling layer was detected as an increase in cumulative pore volumes and pore areas in the meso-pores region. Pore blocking was seen as disappearance of meso-pores and micro-pores. The results indicate that the presented approach of using BET analysis combined with IR spectroscopy can provide complementary information revealing both the structure of fouling layer and the chemical nature of foulants.
Journal Article
The Impact of Glycerol on an Affibody Conformation and Its Correlation to Chemical Degradation
by
Lang, Christian
,
Fransson, Jonas
,
Nilsson, Lars
in
Annan kemiteknik
,
chemical degradation
,
Chemical Engineering
2021
The addition of glycerol to protein solutions is often used to hinder the aggregation and denaturation of proteins. However, it is not a generalised practice against chemical degradation reactions. The chemical degradation of proteins, such as deamidation and isomerisation, is an important deteriorative mechanism that leads to a loss of functionality of pharmaceutical proteins. Here, the influence of glycerol on the chemical degradation of a protein and its correlation to glycerol-induced conformational changes is presented. The time-dependent chemical degradation of a pharmaceutical protein, GA-Z, in the absence and presence of glycerol was investigated in a stability study. The effect of glycerol on protein conformation and oligomerisation was characterised using asymmetric field-flow fractionation and small-angle neutron scattering in a wide glycerol concentration range of 0–90% v/v. The results from the stability study were connected to the observed glycerol-induced conformational changes in the protein. A correlation between protein conformation and the protective effect of glycerol against the degradation reactions deamidation, isomerisation, and hydrolysis was found. The study reveals that glycerol induces conformational changes of the protein, which favour a more compact and chemically stable state. It is also shown that the conformation can be changed by other system properties, e.g., protein concentration, leading to increased chemical stability.
Journal Article
Evolution of Hierarchically Porous Nickel Alumina Catalysts Studied by X‐Ray Ptychography
by
Kahnt, Maik
,
Kulkarni, Satishkumar
,
Sheppard, Thomas L.
in
Annan fysik
,
Annan kemiteknik
,
Catalysis
2022
The synthesis of hierarchically porous materials usually requires complex experimental procedures, often based around extensive trial and error approaches. One common synthesis strategy is the sol–gel method, although the relation between synthesis parameters, material structure and function has not been widely explored. Here, in situ 2D hard X‐ray ptychography (XRP) and 3D ptychographic X‐ray computed tomography (PXCT) are applied to monitor the development of hierarchical porosity in Ni/Al2O3 and Al2O3 catalysts with connected meso‐ and macropore networks. In situ XRP allows to follow textural changes of a dried gel Ni/Al2O3 sample as a function of temperature during calcination, activation and CO2 methanation reaction. Complementary PXCT studies on dried gel particles of Ni/Al2O3 and Al2O3 provide quantitative information on pore structure, size distribution, and shape with 3D spatial resolution approaching 50 nm, while identical particles are imaged ex situ before and after calcination. The X‐ray imaging results are correlated with N2‐sorption, Hg porosimetry and He pycnometry pore characterization. Hard X‐ray nanotomography is highlighted to derive fine structural details including tortuosity, branching nodes, and closed pores, which are relevant in understanding transport phenomena during chemical reactions. XRP and PXCT are enabling technologies to understand complex synthesis pathways of porous materials. Hard X‐ray ptychography in in situ 2D and ex situ 3D modes is shown as an emerging technology to study textural and structural changes of porous materials during thermal treatment. The porosity changes from the dried gel to calcined state of hierarchical porous (Ni/)Al2O3 catalysts are investigated with sub‐100 nm resolution.
Journal Article