Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
2,571
result(s) for
"Ketamine - pharmacology"
Sort by:
Raphe AMPA receptors and nicotinic acetylcholine receptors mediate ketamine-induced serotonin release in the rat prefrontal cortex
by
Nakagawa, Takayuki
,
Kaneko, Shuji
,
Nishitani, Naoya
in
Animals
,
Antidepressive Agents - administration & dosage
,
Antidepressive Agents - pharmacology
2014
Several lines of evidence indicate that ketamine has a rapid antidepressant-like effect in rodents and humans, but underlying mechanisms are unclear. In the present study, we investigated the effect of ketamine on serotonin (5-HT) release in the rat prefrontal cortex by in vivo microdialysis. A subcutaneous administration of ketamine (5 and 25 mg/kg) significantly increased the prefrontal 5-HT level in a dose-dependent manner, which was attenuated by local injection of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) antagonists into the dorsal raphe nucleus (DRN). Direct stimulation of AMPARs in the DRN significantly increased prefrontal 5-HT level, while intra-DRN injection of ketamine (36.5 nmol) had no effect. Furthermore, intra-DRN injection of an α
4
β
2-nicotinic acetylcholine receptor (nAChR) antagonist, dihydro-β-erythroidine (10 nmol), significantly attenuated the subcutaneous ketamine-induced increase in prefrontal 5-HT levels. These results suggest that AMPARs and α
4
β
2-nAChRs in the DRN play a key role in the ketamine-induced 5-HT release in the prefrontal cortex.
Journal Article
NMDAR inhibition-independent antidepressant actions of ketamine metabolites
by
Zanos, Panos
,
Dossou, Katina S. S.
,
Morris, Patrick J.
in
631/154/436/1729
,
631/378/1689/1333
,
631/378/1689/1414
2016
Major depressive disorder affects around 16 per cent of the world population at some point in their lives. Despite the availability of numerous monoaminergic-based antidepressants, most patients require several weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive, glutamatergic NMDAR (
N
-methyl-
d
-aspartate receptor) antagonist (
R
,
S
)-ketamine exerts rapid and sustained antidepressant effects after a single dose in patients with depression, but its use is associated with undesirable side effects. Here we show that the metabolism of (
R
,
S
)-ketamine to (2
S
,6
S
;2
R
,6
R
)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2
R
,6
R
)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant-related actions in mice. These antidepressant actions are independent of NMDAR inhibition but involve early and sustained activation of AMPARs (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors). We also establish that (2
R
,6
R
)-HNK lacks ketamine-related side effects. Our data implicate a novel mechanism underlying the antidepressant properties of (
R
,
S
)-ketamine and have relevance for the development of next-generation, rapid-acting antidepressants.
The metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and the (2R,6R)-HNK enantiomer lacks ketamine-related side effects but exerts rapid and sustained antidepressant actions in mice; these antidepressant effects are independent of NMDAR inhibition but require AMPAR activity.
Antidepressant action of a ketamine metabolite
The NMDAR antagonist ketamine has rapid and sustained antidepressant effects; this has prompted a search for alternative NMDAR antagonists that have the same antidepressant properties but lack the undesirable side effects of ketamine. Todd Gould and colleagues now show that the metabolism of (
R
,
S
)-ketamine to (2
S
,6
S
;2
R
,6
R
)-hydroxynorketamine (HNK) is essential for its antidepressant activity, and that the (2
R
,6
R
)-HNK enantiomer exerts rapid and sustained antidepressant actions in mice. These effects are NMDAR-independent but require AMPAR activation. Importantly, (2
R
,6
R
)-HNK lacks the side effects associated with ketamine. These findings suggest new options for the development of novel rapid-acting antidepressants.
Journal Article
Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb
2023
Ketamine, an
N
-methyl-
d
-aspartate receptor (NMDAR) antagonist
1
, has revolutionized the treatment of depression because of its potent, rapid and sustained antidepressant effects
2
–
4
. Although the elimination half-life of ketamine is only 13 min in mice
5
, its antidepressant activities can last for at least 24 h
6
–
9
. This large discrepancy poses an interesting basic biological question and has strong clinical implications. Here we demonstrate that after a single systemic injection, ketamine continues to suppress burst firing and block NMDARs in the lateral habenula (LHb) for up to 24 h. This long inhibition of NMDARs is not due to endocytosis but depends on the use-dependent trapping of ketamine in NMDARs. The rate of untrapping is regulated by neural activity. Harnessing the dynamic equilibrium of ketamine–NMDAR interactions by activating the LHb and opening local NMDARs at different plasma ketamine concentrations, we were able to either shorten or prolong the antidepressant effects of ketamine in vivo. These results provide new insights into the causal mechanisms of the sustained antidepressant effects of ketamine. The ability to modulate the duration of ketamine action based on the biophysical properties of ketamine–NMDAR interactions opens up new opportunities for the therapeutic use of ketamine.
The discrepancy between the short half-life of ketamine and its long-lasting effects is due to ketamine being trapped in NMDA receptors, and its release depends on neural activity in the lateral habenula.
Journal Article
Ketamine blocks bursting in the lateral habenula to rapidly relieve depression
2018
The
N
-methyl-
d
-aspartate receptor (NMDAR) antagonist ketamine has attracted enormous interest in mental health research owing to its rapid antidepressant actions, but its mechanism of action has remained elusive. Here we show that blockade of NMDAR-dependent bursting activity in the ‘anti-reward center’, the lateral habenula (LHb), mediates the rapid antidepressant actions of ketamine in rat and mouse models of depression. LHb neurons show a significant increase in burst activity and theta-band synchronization in depressive-like animals, which is reversed by ketamine. Burst-evoking photostimulation of LHb drives behavioural despair and anhedonia. Pharmacology and modelling experiments reveal that LHb bursting requires both NMDARs and low-voltage-sensitive T-type calcium channels (T-VSCCs). Furthermore, local blockade of NMDAR or T-VSCCs in the LHb is sufficient to induce rapid antidepressant effects. Our results suggest a simple model whereby ketamine quickly elevates mood by blocking NMDAR-dependent bursting activity of LHb neurons to disinhibit downstream monoaminergic reward centres, and provide a framework for developing new rapid-acting antidepressants.
The rapid antidepressant activity of ketamine results from reversal of increased burst firing and synchronization in the lateral habenula in rat and mouse models of depression.
A burst of activity for antidepressants
The lateral habenula (LHb) is a region of the brain that is associated with aversion and other negative emotions. Hailan Hu and colleagues present a pair of papers in this week's issue on the role of burst firing in LHb neurons in depression in rats. First, they show that ketamine, a drug that can be used as an antidepressant, blocks LHb neuron bursting activity, and that both NMDAR and low-voltage-sensitive T-type calcium channels (T-VSCCs) are required for the drug to be effective. In the second study, the authors identify a potential mechanism for regulating this bursting behaviour that could represent a new therapeutic target. Levels of an astroglial potassium channel, Kir4.1, covary with the degree of membrane hyperpolarization and bursting activity of LHb neurons, as well as depression-related behaviours in various rodent models. The team suggest that blocking LHb neuron bursting activity could revive reward centres in the brain and elevate mood, and provide a model framework for developing rapid-acting antidepressants.
Journal Article
Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation
2019
A better understanding of the mechanisms underlying the action of antidepressants is urgently needed. Moda-Sava
et al.
explored a possible mode of action for the drug ketamine, which has recently been shown to help patients recover from depression (see the Perspective by Beyeler). Ketamine rescued behavior in mice that was associated with depression-like phenotypes by selectively reversing stress-induced spine loss and restoring coordinated multicellular ensemble activity in prefrontal microcircuits. The initial induction of ketamine's antidepressant effect on mouse behavior occurred independently of effects on spine formation. Instead, synaptogenesis in the prefrontal region played a critical role in nourishing these effects over time. Interventions aimed at enhancing the survival of restored synapses may thus be useful for sustaining the behavioral effects of fast-acting antidepressants.
Science
, this issue p.
eaat8078
; see also p.
129
Spine formation in the prefrontal cortex is central to the long-term antidepressant effects of ketamine.
The neurobiological mechanisms underlying the induction and remission of depressive episodes over time are not well understood. Through repeated longitudinal imaging of medial prefrontal microcircuits in the living brain, we found that prefrontal spinogenesis plays a critical role in sustaining specific antidepressant behavioral effects and maintaining long-term behavioral remission. Depression-related behavior was associated with targeted, branch-specific elimination of postsynaptic dendritic spines on prefrontal projection neurons. Antidepressant-dose ketamine reversed these effects by selectively rescuing eliminated spines and restoring coordinated activity in multicellular ensembles that predict motivated escape behavior. Prefrontal spinogenesis was required for the long-term maintenance of antidepressant effects on motivated escape behavior but not for their initial induction.
Journal Article
Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms
by
Monteggia, Lisa M.
,
Krystal, John H.
,
Kavalali, Ege T.
in
Antidepressants
,
Antidepressive Agents - pharmacology
,
Antidepressive Agents - therapeutic use
2024
Ketamine is an open channel blocker of ionotropic glutamatergic
N
-Methyl-
D
-Aspartate (NMDA) receptors. The discovery of its rapid antidepressant effects in patients with depression and treatment-resistant depression fostered novel effective treatments for mood disorders. This discovery not only provided new insight into the neurobiology of mood disorders but also uncovered fundamental synaptic plasticity mechanisms that underlie its treatment. In this review, we discuss key clinical aspects of ketamine’s effect as a rapidly acting antidepressant, synaptic and circuit mechanisms underlying its action, as well as how these novel perspectives in clinical practice and synapse biology form a road map for future studies aimed at more effective treatments for neuropsychiatric disorders.
Journal Article
(R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism
2019
Although recent studies provide insight into the molecular mechanisms of the effects of ketamine, the antidepressant mechanism of ketamine enantiomers and their metabolites is not fully understood. In view of the involvement of mechanisms other than the N-methyl-D-aspartate receptor in ketamine's action, we investigated the effects of (R)-ketamine, (S)-ketamine, (R)-norketamine [(R)-NK], (S)-NK, (2R,6R)-hydroxynorketamine [(2R,6R)-HNK], and (2S,6S)-HNK on monoaminergic neurotransmission in the prefrontal cortex of mice.
The extracellular monoamine levels in the prefrontal cortex were measured by in vivo microdialysis.
(R)-Ketamine and (S)-ketamine acutely increased serotonin release in a dose-dependent manner, and the effect of (R)-ketamine was greater than that of (S)-ketamine. In contrast, (S)-ketamine caused a robust increase in dopamine release compared with (R)-ketamine. Both ketamine enantiomers increased noradrenaline release, but these effects did not differ. (2R,6R)-HNK caused a slight but significant increase in serotonin and noradrenaline but not dopamine release. (S)-NK increased dopamine and noradrenaline but not serotonin release. Differential effects between (R)-ketamine and (S)-ketamine were also observed in a lipopolysaccharide-induced model of depression. An α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4- tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX), attenuated (S)-ketamine-induced, but not (R)-ketamine-induced serotonin release, whereas NBQX blocked dopamine release induced by both enantiomers. Local application of (R)-ketamine into the prefrontal cortex caused a greater increase in prefrontal serotonin release than that of (S)-ketamine.
(R)-Ketamine strongly activates the prefrontal serotonergic system through an AMPA receptor-independent mechanism. (S)-Ketamine-induced serotonin and dopamine release was AMPA receptor-dependent. These findings provide a neurochemical basis for the underlying pharmacological differences between ketamine enantiomers and their metabolites.
Journal Article
Modulation of the antidepressant effects of ketamine by the mTORC1 inhibitor rapamycin
by
Ranganathan Mohini
,
Southwick, Steven M
,
Sherif, Mohamed
in
Antidepressants
,
Intravenous administration
,
Ketamine
2020
Twenty-four hours after administration, ketamine exerts rapid and robust antidepressant effects that are thought to be mediated by activation of the mechanistic target of rapamycin complex 1 (mTORC1). To test this hypothesis, depressed patients were pretreated with rapamycin, an mTORC1 inhibitor, prior to receiving ketamine. Twenty patients suffering a major depressive episode were randomized to pretreatment with oral rapamycin (6 mg) or placebo 2 h prior to the intravenous administration of ketamine 0.5 mg/kg in a double-blind cross-over design with treatment days separated by at least 2 weeks. Depression severity was assessed using Montgomery–Åsberg Depression Rating Scale (MADRS). Rapamycin pretreatment did not alter the antidepressant effects of ketamine at the 24-h timepoint. Over the subsequent 2-weeks, we found a significant treatment by time interaction (F(8,245) = 2.02, p = 0.04), suggesting a prolongation of the antidepressant effects of ketamine by rapamycin. Two weeks following ketamine administration, we found higher response (41%) and remission rates (29%) following rapamycin + ketamine compared to placebo + ketamine (13%, p = 0.04, and 7%, p = 0.003, respectively). In summary, single dose rapamycin pretreatment failed to block the antidepressant effects of ketamine, but it prolonged ketamine’s antidepressant effects. This observation raises questions about the role of systemic vs. local blockade of mTORC1 in the antidepressant effects of ketamine, provides preliminary evidence that rapamycin may extend the benefits of ketamine, and thereby potentially sheds light on mechanisms that contribute to depression relapse after ketamine administration.
Journal Article
Single-dose infusion ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists for unipolar and bipolar depression: a meta-analysis of efficacy, safety and time trajectories
by
Zarate, C. A.
,
Hagi, K.
,
Kane, J. M.
in
Antidepressants
,
Antidepressive Agents - administration & dosage
,
Antidepressive Agents - adverse effects
2016
Ketamine and non-ketamine N-methyl-d-aspartate receptor antagonists (NMDAR antagonists) recently demonstrated antidepressant efficacy for the treatment of refractory depression, but effect sizes, trajectories and possible class effects are unclear.
We searched PubMed/PsycINFO/Web of Science/clinicaltrials.gov until 25 August 2015. Parallel-group or cross-over randomized controlled trials (RCTs) comparing single intravenous infusion of ketamine or a non-ketamine NMDAR antagonist v. placebo/pseudo-placebo in patients with major depressive disorder (MDD) and/or bipolar depression (BD) were included in the analyses. Hedges' g and risk ratios and their 95% confidence intervals (CIs) were calculated using a random-effects model. The primary outcome was depressive symptom change. Secondary outcomes included response, remission, all-cause discontinuation and adverse effects.
A total of 14 RCTs (nine ketamine studies: n = 234; five non-ketamine NMDAR antagonist studies: n = 354; MDD = 554, BD = 34), lasting 10.0 ± 8.8 days, were meta-analysed. Ketamine reduced depression significantly more than placebo/pseudo-placebo beginning at 40 min, peaking at day 1 (Hedges' g = -1.00, 95% CI -1.28 to -0.73, p < 0.001), and loosing superiority by days 10-12. Non-ketamine NMDAR antagonists were superior to placebo only on days 5-8 (Hedges' g = -0.37, 95% CI -0.66 to -0.09, p = 0.01). Compared with placebo/pseudo-placebo, ketamine led to significantly greater response (40 min to day 7) and remission (80 min to days 3-5). Non-ketamine NMDAR antagonists achieved greater response at day 2 and days 3-5. All-cause discontinuation was similar between ketamine (p = 0.34) or non-ketamine NMDAR antagonists (p = 0.94) and placebo. Although some adverse effects were more common with ketamine/NMDAR antagonists than placebo, these were transient and clinically insignificant.
A single infusion of ketamine, but less so of non-ketamine NMDAR antagonists, has ultra-rapid efficacy for MDD and BD, lasting for up to 1 week. Development of easy-to-administer, repeatedly given NMDAR antagonists without risk of brain toxicity is of critical importance.
Journal Article
Prefrontal cortex circuits in depression and anxiety: contribution of discrete neuronal populations and target regions
2020
Our understanding of depression and its treatment has advanced with the advent of ketamine as a rapid-acting antidepressant and the development and refinement of tools capable of selectively altering the activity of populations of neuronal subtypes. This work has resulted in a paradigm shift away from dysregulation of single neurotransmitter systems in depression towards circuit level abnormalities impacting function across multiple brain regions and neurotransmitter systems. Studies on the features of circuit level abnormalities demonstrate structural changes within the prefrontal cortex (PFC) and functional changes in its communication with distal brain structures. Treatments that impact the activity of brain regions, such as transcranial magnetic stimulation or rapid-acting antidepressants like ketamine, appear to reverse depression associated circuit abnormalities though the mechanisms underlying the reversal, as well as development of these abnormalities remains unclear. Recently developed optogenetic and chemogenetic tools that allow high-fidelity control of neuronal activity in preclinical models have begun to elucidate the contributions of the PFC and its circuitry to depression- and anxiety-like behavior. These tools offer unprecedented access to specific circuits and neuronal subpopulations that promise to offer a refined view of the circuit mechanisms surrounding depression and potential mechanistic targets for development and reversal of depression associated circuit abnormalities.
Journal Article