Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,828 result(s) for "Klebsiella pneumoniae - metabolism"
Sort by:
High prevalence of ESBL-Producing E. coli in private and shared latrines in an informal urban settlement in Dar es Salaam, Tanzania
Background Data about the burden of extended-spectrum beta-lactamase (ESBL)-producing microorganisms in Africa are limited. Our study aimed to estimate the prevalence of human faecal ESBL carriage in the community of an informal urban settlement in Dar es Salaam (Tanzania, East Africa) by using environmental contamination of household latrines with ESBL as a surrogate marker. Methods Within the context of a large survey in February 2014 assessing 636 randomly selected household latrines for faecal contamination by the detection of growth of E. coli and total faecal coliform bacteria, a randomly selected subset of the samples were screened for ESBL. Results Seventy latrines were screened for ESBL. An average of 11.4 persons (SD ±6.5) were sharing one latrine. Only three (4.3%) latrines had hand-washing facilities and 50 showed faeces on the floor. ESBL-producing Enterobacteriaceae were confirmed in 17 (24.3%) of the 70 latrine samples: 16 E. coli and 1 Klebsiella pneumoniae. Five ESBL E. coli strains were detected on door handles. The most prevalent ESBL type was CTX-M-1 group (76.5%). Pulsed-field gel electrophoresis typing of a subset of ESBL-producing E. coli isolates revealed both diverse singular types and a cluster of 3 identical isolates. There was no significant difference of the latrine and household characteristics between the group with ESBL ( n  = 17) and the group with non-ESBL E. coli ( n  = 53) ( p  > 0.05). Conclusions Almost a quarter of private and shared latrines in an informal urban settlement in Tanzania are contaminated with ESBL-producing microorganisms, suggesting a high prevalence of human ESBL faecal carriage in the community. Shared latrines may serve as a reservoir for transmission in urban community settings in Tanzania.
A Klebsiella pneumoniae Regulatory Mutant Has Reduced Capsule Expression but Retains Hypermucoviscosity
Klebsiella pneumoniae continues to be a substantial public health threat due to its ability to cause health care-associated and community-acquired infections combined with its ability to acquire antibiotic resistance. Novel therapeutics are needed to combat this pathogen, and a greater understanding of its virulence factors is required for the development of new drugs. A key virulence factor for K. pneumoniae is the capsule, and community-acquired hypervirulent strains produce a capsule that causes hypermucoidy. We report here a novel capsule regulator, RmpC, and provide evidence that capsule production and the hypermucoviscosity phenotype are distinct processes. Infection studies showing that this and other capsule regulator mutants have a range of phenotypes indicate that additional virulence factors are in their regulons. These results shed new light on the mechanisms controlling capsule production and introduce targets that may prove useful for the development of novel therapeutics for the treatment of this increasingly problematic pathogen. The polysaccharide capsule is an essential virulence factor for Klebsiella pneumoniae in both community-acquired hypervirulent strains as well as health care-associated classical strains that are posing significant challenges due to multidrug resistance. Capsule production is known to be transcriptionally regulated by a number of proteins, but very little is known about how these proteins collectively control capsule production. RmpA and RcsB are two known regulators of capsule gene expression, and RmpA is required for the hypermucoviscous (HMV) phenotype in hypervirulent K. pneumoniae strains. In this report, we confirmed that these regulators performed their anticipated functions in the ATCC 43816 derivative, KPPR1S: rcsB and rmpA mutants are HMV negative and have reduced capsule gene expression. We also identified a novel transcriptional regulator, RmpC, encoded by a gene near rmpA . The Δ rmpC strain has reduced capsule gene expression but retains the HMV phenotype. We further showed that a regulatory cascade exists in which KvrA and KvrB, the recently characterized MarR-like regulators, and RcsB contribute to capsule regulation through regulation of the rmpA promoter and through additional mechanisms. In a murine pneumonia model, the regulator mutants have a range of colonization defects, suggesting that they regulate virulence factors in addition to capsule. Further testing of the rmpC and rmpA mutants revealed that they have distinct and overlapping functions and provide evidence that HMV is not dependent on overproduction of capsule. This distinction will facilitate a better understanding of HMV and how it contributes to enhanced virulence of hypervirulent strains. IMPORTANCE Klebsiella pneumoniae continues to be a substantial public health threat due to its ability to cause health care-associated and community-acquired infections combined with its ability to acquire antibiotic resistance. Novel therapeutics are needed to combat this pathogen, and a greater understanding of its virulence factors is required for the development of new drugs. A key virulence factor for K. pneumoniae is the capsule, and community-acquired hypervirulent strains produce a capsule that causes hypermucoidy. We report here a novel capsule regulator, RmpC, and provide evidence that capsule production and the hypermucoviscosity phenotype are distinct processes. Infection studies showing that this and other capsule regulator mutants have a range of phenotypes indicate that additional virulence factors are in their regulons. These results shed new light on the mechanisms controlling capsule production and introduce targets that may prove useful for the development of novel therapeutics for the treatment of this increasingly problematic pathogen.
Lactate promotes invasive Klebsiella pneumoniae liver abscess syndrome by increasing capsular polysaccharide biosynthesis via the PTS-CRP axis
The global incidence of invasive Klebsiella pneumoniae liver abscess syndrome (IKPLAS) increases, yet its underlying molecular mechanisms remain elusive, hindering the development of effective therapeutic strategies. In this study, we analyze bacterial molecular profiles and clinical data from patients with KPLA and IKPLAS, and find no significant difference in the molecular characteristics of K. pneumoniae between the two groups, however, we identify elevated blood lactate levels as an independent predictor of IKPLAS. Further investigation reveals that lactate enhances K. pneumoniae virulence by promoting capsular polysaccharide (CPS) biosynthesis. Mechanistically, lactate reduces cyclic adenosine monophosphate (cAMP) levels by downregulating the expression of mannose-specific phosphotransferase system (man-PTS) enzyme IIA-D genes ( gfrA , gfrB, gfrC and gfrD ). This reduction in cAMP levels enhances CPS biosynthesis by decreasing its binding to the cAMP receptor protein (CRP). Our results highlight lactate’s role in enhancing the virulence of K. pneumoniae via the PTS-CRP axis, offering insights into the pathogenesis of IKPLAS. The molecular mechanism for invasive Klebsiella pneumoniae liver abscess syndrome (IKPLAS) remains poorly studied. Here, the authors demonstrate that the elevated blood lactate level is an independent predictor of IKPLAS by enhancing the virulence of K. pneumoniae via the PTS-CRP axis.
Lavender essential oil induces oxidative stress which modifies the bacterial membrane permeability of carbapenemase producing Klebsiella pneumoniae
Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K . pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K . pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
Klebsiella pneumoniae Type VI Secretion System Contributes to Bacterial Competition, Cell Invasion, Type-1 Fimbriae Expression, and In Vivo Colonization
Abstract Background We previously isolated a Klebsiella pneumoniae strain, NTUH-K2044, from a community-acquired pyogenic liver abscess (PLA) patient. Analysis of the NTUH-K2044 genome revealed that this strain harbors 2 putative type VI secretion system (T6SS)-encoding gene clusters. Methods The distribution of T6SS genes in the PLA and intestinal-colonizing K pneumoniae clinical isolates was examined. icmF1-, icmF2-, icmF1/icmF2-, and hcp-deficient K pneumoniae strains were constructed using an unmarked deletion method. The roles of T6SSs in antibacterial activity, type-1 fimbriae expression, cell adhesion, and invasion and intestinal colonization were determined. Results The prevalence of T6SSs is higher in the PLA strains than in the intestinal-colonizing strains (37 of 42 vs 54 of 130). Deletion of icmF1/icmF2 and hcp genes significantly reduced interbacterial and intrabacterial killing. Strain deleted for icmF1 and icmF2 exhibited decreased transcriptional expression of type-1 fimbriae and reduced adherence to and invasion of human colorectal epithelial cells and was attenuated for in vivo competition to enable colonization of the host gut. Finally, Hcp expression in K pneumoniae was silenced by the histone-like nucleoid structuring protein via direct binding. Conclusions These results provide new insights into T6SS-mediated bacterial competition and attachment in K pneumoniae and could facilitate the prevention of K pneumoniae infection.
RNA interactome of hypervirulent Klebsiella pneumoniae reveals a small RNA inhibitor of capsular mucoviscosity and virulence
Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging bacterial pathogen causing invasive infection in immune-competent humans. The hypervirulence is strongly linked to the overproduction of hypermucoviscous capsule, but the underlying regulatory mechanisms of hypermucoviscosity (HMV) have been elusive, especially at the post-transcriptional level mediated by small noncoding RNAs (sRNAs). Using a recently developed RNA interactome profiling approach iRIL-seq, we interrogate the Hfq-associated sRNA regulatory network and establish an intracellular RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNAs that repress or promote HMV. One of the strongest HMV repressors is ArcZ, which is activated by the catabolite regulator CRP and targets many HMV-related genes including mlaA and fbp . We discover that MlaA and its function in phospholipid transport is crucial for capsule retention and HMV, inactivation of which abolishes Klebsiella virulence in mice. ArcZ overexpression drastically reduces bacterial burden in mice and reduces HMV in multiple hypervirulent and carbapenem-resistant clinical isolates, indicating ArcZ is a potent RNA inhibitor of bacterial pneumonia with therapeutic potential. Our work unravels a novel CRP-ArcZ-MlaA regulatory circuit of HMV and provides mechanistic insights into the posttranscriptional virulence control in a superbug of global concern. By performing a global RNA-RNA interactome analysis in hypervirulent Klebsiella pneumoniae , the authors identify the small RNA ArcZ targets many capsule genes and a key virulence factor MlaA, inhibiting Klebsiella infection and pathogenesis in mice.
ANCA: artificial nucleic acid circuit with argonaute protein for one-step isothermal detection of antibiotic-resistant bacteria
Endonucleases have recently widely used in molecular diagnostics. Here, we report a strategy to exploit the properties of Argonaute (Ago) proteins for molecular diagnostics by introducing an artificial nucleic acid circuit with Ago protein (ANCA) method. The ANCA is designed to perform a continuous autocatalytic reaction through cross-catalytic cleavage of the Ago protein, enabling one-step, amplification-free, and isothermal DNA detection. Using the ANCA method, carbapenemase-producing Klebsiella pneumoniae (CPKP) are successfully detected without DNA extraction and amplification steps. In addition, we demonstrate the detection of carbapenem-resistant bacteria in human urine and blood samples using the method. We also demonstrate the direct identification of CPKP swabbed from surfaces using the ANCA method in conjunction with a three-dimensional nanopillar structure. Finally, the ANCA method is applied to detect CPKP in rectal swab specimens from infected patients, achieving sensitivity and specificity of 100% and 100%, respectively. The developed method can contribute to simple, rapid and accurate diagnosis of CPKP, which can help prevent nosocomial infections. Antibiotic-resistant bacteria pose a growing threat to global health. Here, the authors present an artificial nucleic acid circuit with argonaute protein (ANCA) for one-step, amplification-free, and isothermal detection of carbapenemase-producing Klebsiella pneumoniae.
The Small Protein RmpD Drives Hypermucoviscosity in Klebsiella pneumoniae
Capsule is a critical virulence factor in Klebsiella pneumoniae , in both antibiotic-resistant classical strains and hypervirulent strains. Hypervirulent strains usually have a hypermucoviscosity (HMV) phenotype that contributes to their heightened virulence capacity, but the production of HMV is not understood. The transcriptional regulator RmpA is required for HMV and also activates capsule gene expression, leading to the assumption that HMV is caused by hyperproduction of capsule. We have identified a new gene ( rmpD ) required for HMV but not for capsule production. This distinction between HMV and capsule production will promote a better understanding of the mechanisms of hypervirulence, which is in great need given the alarming increase in clinical isolates with both drug resistance and hypervirulence traits. Klebsiella pneumoniae has a remarkable ability to cause a wide range of human diseases. It is divided into two broad classes: classical strains that are a notable problem in health care settings due to multidrug resistance, and hypervirulent (hv) strains that are historically drug sensitive but able to establish disease in immunocompetent hosts. Alarmingly, there has been an increased frequency of clinical isolates that have both drug resistance and hv-associated genes. One such gene, rmpA , encodes a transcriptional regulator required for maximal capsule ( cps ) gene expression and confers hypermucoviscosity (HMV). This link has resulted in the assumption that HMV is caused by elevated capsule production. However, we recently reported a new cps regulator, RmpC, and Δ rmpC mutants have reduced cps expression but retain HMV, suggesting that capsule production and HMV may be separable traits. Here, we report the identification of a small protein, RmpD, that is essential for HMV but does not impact capsule. RmpD is 58 residues with a putative N-terminal transmembrane domain and highly positively charged C-terminal half, and it is conserved among other hv K. pneumoniae strains. Expression of rmpD in trans complements both Δ rmpD and Δ rmpA mutants for HMV, suggesting that RmpD is the key driver of this phenotype. The rmpD gene is located between rmpA and rmpC , within an operon regulated by RmpA. These data, combined with our previous work, suggest a model in which the RmpA-associated phenotypes are largely due to RmpA activating the expression of rmpD to produce HMV and rmpC to stimulate cps expression. IMPORTANCE Capsule is a critical virulence factor in Klebsiella pneumoniae , in both antibiotic-resistant classical strains and hypervirulent strains. Hypervirulent strains usually have a hypermucoviscosity (HMV) phenotype that contributes to their heightened virulence capacity, but the production of HMV is not understood. The transcriptional regulator RmpA is required for HMV and also activates capsule gene expression, leading to the assumption that HMV is caused by hyperproduction of capsule. We have identified a new gene ( rmpD ) required for HMV but not for capsule production. This distinction between HMV and capsule production will promote a better understanding of the mechanisms of hypervirulence, which is in great need given the alarming increase in clinical isolates with both drug resistance and hypervirulence traits.
In vitro activity of cefiderocol against ceftazidime-avibactam susceptible and resistant KPC-producing Enterobacterales: cross-resistance and synergistic effects
Purpose To assess the in vitro activity of cefiderocol (CFDC) against a collection of both ceftazidime-avibactam (CZA) susceptible and resistant KPC-producing Enterobacterales (KPC-EB) isolates. Secondly, to assess its synergistic activity in combination with different antibiotics. Methods One hundred KPC-EB isolates were tested: 60 CZA susceptible and 40 CZA resistant. Among them, 17 pairs of CZA susceptible and resistant KPC-producing Klebsiella pneumoniae (KPC-Kp) isolates were collected from 17 distinct patients before and after CZA treatment, respectively. CFDC susceptibility was evaluated by both broth microdilution (lyophilized panels; Sensititre; Thermo Fisher) and disk diffusion testing. Results were interpreted using EUCAST breakpoints. Synergistic activity of CFDC in combination with CZA, meropenem-vaborbactam, imipenem, and amikacin against six characterized KPC-Kp strains, before and after acquisition of CZA resistance, was evaluated using gradient diffusion strip crossing method. Results CFDC resistance rate was significantly higher in CZA resistant EB subset than in the susceptible one ( p  < 0.001): 82.5% vs 6.7%. MIC50 and MIC90 values were 0.25 and 2 mg/L, 8 and 64 mg/L in CZA-susceptible and CZA-resistant subset, respectively. KPC-Kp isolates harboring KPC-D179Y or KPC-Δ242-GT-243 variants showed CFDC MICs ranging from 4 to 64 mg/L. CFDC showed in vitro synergistic effect mostly with CZA, against both CZA susceptible and resistant isolates, resulting in a synergy rate of 66.7%. Conclusions CZA resistance mechanisms in KPC-EB impair the in vitro activity of CFDC, often leading to co-resistance. CFDC in combination with the new β-lactamases inhibitors might represent a strategy to enhance its activity.
A metabolic atlas of the Klebsiella pneumoniae species complex reveals lineage-specific metabolism and capacity for intra-species co-operation
The Klebsiella pneumoniae species complex inhabits a wide variety of hosts and environments, and is a major cause of antimicrobial resistant infections. Genomics has revealed the population comprises multiple species/sub-species and hundreds of distinct co-circulating sub-lineage (SLs) that are associated with distinct gene complements. A substantial fraction of the pan-genome is predicted to be involved in metabolic functions and hence these data are consistent with metabolic differentiation at the SL level. However, this has so far remained unsubstantiated because in the past it was not possible to explore metabolic variation at scale. Here, we used a combination of comparative genomics and high-throughput genome-scale metabolic modeling to systematically explore metabolic diversity across the K. pneumoniae species complex (n = 7,835 genomes). We simulated growth outcomes for each isolate using carbon, nitrogen, phosphorus, and sulfur sources under aerobic and anaerobic conditions (n = 1,278 conditions per isolate). We showed that the distributions of metabolic genes and growth capabilities are structured in the population, and confirmed that SLs exhibit unique metabolic profiles. In vitro co-culture experiments demonstrated reciprocal commensalistic cross-feeding between SLs, effectively extending the range of conditions supporting individual growth. We propose that these substrate specializations may promote the existence and persistence of co-circulating SLs by reducing nutrient competition and facilitating commensal interactions. Our findings have implications for understanding the eco-evolutionary dynamics of K. pneumoniae and for the design of novel strategies to prevent opportunistic infections caused by this World Health Organization priority antimicrobial resistant pathogen.