Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,699
result(s) for
"Kohlenstoff"
Sort by:
Mineral protection regulates long-term global preservation of natural organic carbon
by
Hemingway, Jordon D.
,
Rothman, Daniel H.
,
Galy, Valier V.
in
704/106/47/4113
,
704/158/47/4113
,
704/47/4113
2019
The balance between photosynthetic organic carbon production and respiration controls atmospheric composition and climate
1
,
2
. The majority of organic carbon is respired back to carbon dioxide in the biosphere, but a small fraction escapes remineralization and is preserved over geological timescales
3
. By removing reduced carbon from Earth’s surface, this sequestration process promotes atmospheric oxygen accumulation
2
and carbon dioxide removal
1
. Two major mechanisms have been proposed to explain organic carbon preservation: selective preservation of biochemically unreactive compounds
4
,
5
and protection resulting from interactions with a mineral matrix
6
,
7
. Although both mechanisms can operate across a range of environments and timescales, their global relative importance on 1,000-year to 100,000-year timescales remains uncertain
4
. Here we present a global dataset of the distributions of organic carbon activation energy and corresponding radiocarbon ages in soils, sediments and dissolved organic carbon. We find that activation energy distributions broaden over time in all mineral-containing samples. This result requires increasing bond-strength diversity, consistent with the formation of organo-mineral bonds
8
but inconsistent with selective preservation. Radiocarbon ages further reveal that high-energy, mineral-bound organic carbon persists for millennia relative to low-energy, unbound organic carbon. Our results provide globally coherent evidence for the proposed
7
importance of mineral protection in promoting organic carbon preservation. We suggest that similar studies of bond-strength diversity in ancient sediments may reveal how and why organic carbon preservation—and thus atmospheric composition and climate—has varied over geological time.
Broadening activation energy distributions and increasing radiocarbon ages reveal the global importance of mineral protection in promoting organic carbon preservation.
Journal Article
Interconnected hollow carbon nanospheres for stable lithium metal anodes
2014
For future applications in portable electronics, electric vehicles and grid storage, batteries with higher energy storage density than existing lithium ion batteries need to be developed. Recent efforts in this direction have focused on high-capacity electrode materials such as lithium metal, silicon and tin as anodes, and sulphur and oxygen as cathodes. Lithium metal would be the optimal choice as an anode material, because it has the highest specific capacity (3,860 mAh g
–1
) and the lowest anode potential of all. However, the lithium anode forms dendritic and mossy metal deposits, leading to serious safety concerns and low Coulombic efficiency during charge/discharge cycles. Although advanced characterization techniques have helped shed light on the lithium growth process, effective strategies to improve lithium metal anode cycling remain elusive. Here, we show that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithium metal depositions and facilitates the formation of a stable solid electrolyte interphase. We show that lithium dendrites do not form up to a practical current density of 1 mA cm
–2
. The Coulombic efficiency improves to ∼99% for more than 150 cycles. This is significantly better than the bare unmodified samples, which usually show rapid Coulombic efficiency decay in fewer than 100 cycles. Our results indicate that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithium metal anodes.
Hollow carbon nanospheres form a stable solid electrolyte interphase on lithium metal anodes that suppresses dendrite growth and improves cycling Coulombic efficiency.
Journal Article
A review on the classification, characterisation, synthesis of nanoparticles and their application
2017
As per ISO and ASTM standards, nanoparticles are particles of sizes ranging from 1 to 100nm with one or more dimensions. The nanoparticles are generally classified into the organic, inorganic and carbon based particles in nanometric scale that has improved properties compared to larger sizes of respective materials. The nanoparticles show enhanced properties such as high reactivity, strength, surface area, sensitivity, stability, etc. because of their small size. The nanoparticles are synthesised by various methods for research and commercial uses that are classified into three main types namely physical, chemical and mechanical processes that has seen a vast improvement over time. This paper presents a review on nanoparticles, their types, properties, synthesis methods and its applications in the field of environment.
Journal Article
Thermal properties of graphene and nanostructured carbon materials
2011
Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range — of over five orders of magnitude — from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.
The thermal properties of nanostructures have become a fundamental topic owing to the necessity of heat removal in increasingly smaller electronic devices. Carbon allotropes present a range of intriguing thermal features, with the thermal conductivity spanning five orders of magnitude at room temperature. The topic is reviewed here with particular emphasis on graphene, which exhibits the highest thermal conductivity observed.
Journal Article
Soil labile organic carbon fractions and soil enzyme activities after 10 years of continuous fertilization and wheat residue incorporation
2020
Labile organic carbon (LOC) fractions and related enzyme activities in soils are considered to be early and sensitive indicators of soil quality changes. We investigated the influences of fertilization and residue incorporation on LOC fractions, enzyme activities, and the carbon pool management index (CPMI) in a 10-year field experiment. The experiment was composed of three treatments: (1) no fertilization (control), (2) chemical fertilizer application alone (F), and (3) chemical fertilizer application combined with incorporation of wheat straw residues (F + R). Generally, the F + R treatment led to the highest concentrations of the LOC fractions. Compared to the control treatment, the F + R treatment markedly enhanced potential activities of cellulase (CL), β-glucosidase (BG), lignin peroxidase (LiP), and manganese peroxidase (MnP), but decreased laccase (LA) potential activity. Partial least squares regression analysis suggested that BG and MnP activities had a positive impact on the light-fraction organic carbon (LFOC), permanganate-oxidizable carbon (POXC), and dissolved organic carbon (DOC) fractions, whereas laccase activity had a negative correlation with those fractions. In addition, the F + R treatment significantly increased the CPMI compared to the F and control treatments. These results indicated that combining fertilization with crop residues stimulates production of LOC and could be a useful approach for maintaining sustainable production capacity in lime concretion black soils along the Huai River region of China.
Journal Article
Predicting lake dissolved organic carbon at a global scale
2020
The pool of dissolved organic carbon (DOC), is one of the main regulators of the ecology and biogeochemistry of inland water ecosystems, and an important loss term in the carbon budgets of land ecosystems. We used a novel machine learning technique and global databases to test if and how different environmental factors contribute to the variability of
in situ
DOC concentrations in lakes. In order to estimate DOC in lakes globally we predicted DOC in each lake with a surface area larger than 0.1 km
2
. Catchment properties and meteorological and hydrological features explained most of the variability of the lake DOC concentration, whereas lake morphometry played only a marginal role. The predicted average of the global DOC concentration in lake water was 3.88 mg L
−1
. The global predicted pool of DOC in lake water was 729 Tg from which 421 Tg was the share of the Caspian Sea. The results provide global-scale evidence for ecological, climate and carbon cycle models of lake ecosystems and related future prognoses.
Journal Article
Solid lubricants: a review
by
Prasad, S. V.
,
Scharf, T. W.
in
carbon
,
Characterization and Evaluation of Materials
,
Chemical reactions
2013
The fundamental mechanisms of solid lubrication are reviewed with examples from well-known solid lubricants like the transition metal dichalcogenides and diamond-like carbon families of coatings. Solid lubricants are applied either as surface coatings or as fillers in self-lubricating composites. Tribological (friction and wear) contacts with solid lubricant coatings typically result in transfer of a thin layer of material from the surface of the coating to the counterface, commonly known as a transfer film or tribofilm. The wear surfaces can exhibit different chemistry, microstructure, and crystallographic texture from those of the bulk coating due to surface chemical reactions with the surrounding environment. As a result, solid lubricant coatings that give extremely low friction and long wear life in one environment can fail to do so in a different environment. Most solid lubricants exhibit non-Amontonian friction behavior with friction coefficients decreasing with increasing contact stress. The main mechanism responsible for low friction is typically governed by interfacial sliding between the worn coating and the transfer film. Strategies are discussed for the design of novel coating architectures to adapt to varying environments.
Journal Article
Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams
2020
The Central Siberian Plateau is undergoing rapid climate change that has resulted in increased frequency of forest fires and subsequent alteration of watershed carbon and nutrient dynamics. Across a watershed chronosequence (3 to >100 years since wildfire) we quantified the effects of fire on quantity and composition of dissolved organic matter (DOM), stream water nutrient concentrations, as well as in-stream nutrient uptake. Wildfires increased concentrations of nitrate for a decade, while decreasing concentrations of dissolved organic carbon and nitrogen (DOC and DON) and aliphatic DOM contribution for five decades. These post-wildfire changes in stream DOM result in lower uptake efficiency of in-stream nitrate in recently burned watersheds. Nitrate uptake (as uptake velocity) is strongly dependent on DOM composition (e.g. polyphenolics), ambient dissolved inorganic nitrogen (DIN), and DOC to DIN ratios. Our observations and experiments suggest that a decade-long pulse of inorganic nitrogen and a reduction of DOC export occur following wildfires in streams draining the Central Siberian Plateau. Increased fire frequency in the region is thus likely to both decrease DOM and increase nitrate delivery to the main stem Yenisei River, and ultimately the Arctic Ocean, in the coming decades.
Journal Article
Mixing it up in the ocean carbon cycle and the removal of refractory dissolved organic carbon
2018
A large quantity of reduced carbon is sequestered in the ocean as refractory dissolved molecules that persist through several circuits of global overturning circulation. Key aspects of the cycling of refractory dissolved organic carbon (DOC) remain unknown, making it challenging to predict how this large carbon reservoir will respond to climate change. Herein we investigate mechanisms that remove refractory DOC using bioassay experiments with DOC isolated from surface, mesopelagic and deep waters of the Atlantic Ocean. The isolated DOC was refractory to degradation by native microbial communities, even at elevated concentrations. However, when the refractory DOC was introduced to a series of novel environmental conditions, including addition of a labile substrate, a microbial community from coastal waters and exposure to solar radiation, a substantial fraction (7–13%) was removed within 1.5 years. Our results suggest that while refractory molecules can persist in the ocean for millennia, removal is rapid when they encounter their fate. The observed and projected climate-induced slowdown of global overturning circulation could reduce the exposure of refractory molecules to disparate removal processes. Assuming a constant rate of production, the reservoir size of refractory DOC could increase as overturning circulation slows, providing a negative feedback to rising atmospheric CO
2
.
Journal Article
Abrupt Holocene climate shifts in coastal East Asia, including the 8.2 ka, 4.2 ka, and 2.8 ka BP events, and societal responses on the Korean peninsula
2019
Holocene abrupt cooling events have long attracted attention in academia due to public concern that similar rapid changes may reappear in the near future. Thus, considerable progress has been made toward understanding these short-term cooling events in the Northern Hemisphere, particularly in Europe and North America. However, few relevant studies have been conducted in coastal East Asia due to a lack of undisturbed sample materials appropriate for paleoclimate studies. In this study, we examined Holocene abrupt drying events and the Holocene climate optimum (HCO) based on a new high-resolution multi-proxy record (pollen, mean grain size, total organic carbon, carbon/nitrogen ratio) from the south coast of Korea. Possible cultural impacts of the events were also explored using summed probability distributions (SPDs) of archaeological radiocarbon dates. Our arboreal pollen percentage (AP) data clearly indicated drying events centered at 9.8 ka, 9.2 ka, 8.2 ka, 4.7 ka, 4.2 ka, 3.7 ka, 3.2 ka, 2.8 ka, and 2.4 ka BP. The AP data also indicated that forests were severely damaged by a two-step successive drying event during the period from 8.4 ka to 8 ka BP and that the HCO lasted from ca. 7.6 ka to ca. 4.8 ka BP. According to the results of a correlation analysis, climate variations on the Korean peninsula were possibly controlled by shifts in western tropical Pacific (WTP) sea surface temperatures during the past ~5500 years. Simultaneous declines in the SPDs and AP from 2.8 ka to 2.3 ka BP may reflect a demographic reduction attributable to rapid climate deterioration on the peninsula. Refugee agriculturalists might have immigrated to Japan and developed the Yayoi culture. In this study, the 2.8 ka event and its societal impact are recognized clearly for the first time in coastal East Asia.
Journal Article