Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
Is Full-Text AvailableIs Full-Text Available
-
YearFrom:-To:
-
More FiltersMore FiltersSubjectPublisherSourceLanguagePlace of PublicationContributors
Done
Filters
Reset
3,214
result(s) for
"Kohlenwasserstoffe"
Sort by:
Reductive Aromatization/Dearomatization and Elimination Reactions to Access Conjugated Polycyclic Hydrocarbons, Heteroacenes, and Cumulenes
by
Lehnherr, Dan
,
Lindner, Benjamin D.
,
Marshall, Jonathan L.
in
acenes
,
cumulenes
,
indenofluorenes
2017
Acenes, heteroacenes, conjugated polycyclic hydrocarbons, and polycyclic aromatic hydrocarbons (collectively referred to in this review as conjugated polycyclic molecules, CPMs) have fascinated chemists since they were first isolated and synthesized in the mid 19th century. Most recently, these compounds have shown significant promise as the active components in organic devices (e.g., solar cells, thin‐film transistors, light‐emitting diodes, etc.), and, since 2001, a plethora of publications detail synthetic strategies to produce CPMs. In this review, we discuss reductive aromatization, reductive dearomatization, and elimination/extrusion reactions used to form CPMs. After a brief discussion on early methods to synthesize CPMs, we detail the use of reagents used for the reductive (de)aromatization of precursors containing 1,4‐diols/diethers, including SnCl2 and iodide (I−). Extension of these methods to carbomers and cumulenes is briefly discussed. We then describe low‐valent metal species used to reduce endoxides to CPMs, and discuss the methods to directly reduce acenediones and acenones to the respective acene. In the final section, we describe methods used to affect aromatization to the desired CPM via extrusion of small, volatile molecules. Completing circuits: Conjugated polycyclic molecules play a central role in most functional organic materials. Established routes to these valuable compounds rely on reductive aromatization, dearomatization, and elimination reactions which are reviewed (see figure).
Journal Article
Insight into the effects of confined hydrocarbon species on the lifetime of methanol conversion catalysts
by
Van Speybroeck, V.
,
Lezcano-Gonzalez, I.
,
Sazanovich, I. V.
in
119/118
,
140/133
,
639/301/299/1013
2020
The methanol-to-hydrocarbons reaction refers collectively to a series of important industrial catalytic processes to produce either olefins or gasoline. Mechanistically, methanol conversion proceeds through a ‘pool’ of hydrocarbon species. For the methanol-to-olefins process, these species can be delineated broadly into ‘desired’ lighter olefins and ‘undesired’ heavier fractions that cause deactivation in a matter of hours. The crux in further catalyst optimization is the ability to follow the formation of carbonaceous species during operation. Here, we report the combined results of an operando Kerr-gated Raman spectroscopic study with state-of-the-art operando molecular simulations, which allowed us to follow the formation of hydrocarbon species at various stages of methanol conversion. Polyenes are identified as crucial intermediates towards formation of polycyclic aromatic hydrocarbons, with their fate determined largely by the zeolite topology. Notably, we provide the missing link between active and deactivating species, which allows us to propose potential design rules for future-generation catalysts.
The methanol-to-hydrocarbons reaction on zeolites produces olefins from many sources, but catalyst stability is a major challenge. Here, by combining operando measurements and simulations, the formation and identification of deactivating carbonaceous species throughout the reaction are achieved.
Journal Article
Comprehensive Review of Aliphatic Hydrocarbon Biodegradation by Bacteria
by
Lockington, Robin
,
Abbasian, Firouz
,
Naidu, Ravi
in
Aerobic bacteria
,
Anaerobic bacteria
,
Anaerobiosis
2015
Hydrocarbons are relatively recalcitrant compounds and are classified as high-priority pollutants. However, these compounds are slowly degraded by a large variety of microorganisms. Bacteria are able to degrade aliphatic saturated and unsaturated hydrocarbons via both aerobic and anaerobic pathways. Branched hydrocarbons and cyclic hydrocarbons are also degraded by bacteria. The aerobic bacteria use different types of oxygenases, including monooxygenase, cytochrome-dependent oxygenase and dioxygenase, to insert one or two atoms of oxygen into their targets. Anaerobic bacteria, on the other hand, employ a variety of simple organic and inorganic molecules, including sulphate, nitrate, carbonate and metals, for hydrocarbon oxidation.
Journal Article
Selective conversion of syngas to light olefins
2016
Although considerable progress has been made in direct synthesis gas (syngas) conversion to light olefins (C₂⁼−C₄⁼) via Fischer-Tropsch synthesis (FTS), the wide product distribution remains a challenge, with a theoretical limit of only 58% for C₂–C₄ hydrocarbons. We present a process that reaches C₂⁼−C₄⁼ selectivity as high as 80% and C₂–C₄ 94% at carbon monoxide (CO) conversion of 17%. This is enabled by a bifunctional catalyst affording two types of active sites with complementary properties. The partially reduced oxide surface (ZnCrOx) activates CO and H₂, and C–C coupling is subsequently manipulated within the confined acidic pores of zeolites. No obvious deactivation is observed within 110 hours. Furthermore, this composite catalyst and the process may allow use of coal- and biomass-derived syngas with a low H₂/CO ratio.
Journal Article
Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications
by
Fuentes, Sebastián
,
Aguila, Patricia
,
Seeger, Michael
in
Actinobacteria
,
Aerobic conditions
,
Alkanes
2014
Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among
Proteobacteria
,
Actinobacteria
,
Firmicutes
and
Fungi
strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.
Journal Article
Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen
2014
The efficient use of natural gas will require catalysts that can activate the first C–H bond of methane while suppressing complete dehydrogenation and avoiding overoxidation. We report that single iron sites embedded in a silica matrix enable direct, nonoxidative conversion of methane, exclusively to ethylene and aromatics. The reaction is initiated by catalytic generation of methyl radicals, followed by a series of gas-phase reactions. The absence of adjacent iron sites prevents catalytic C-C coupling, further oligomerization, and hence, coke deposition. At 136B kelvin, methane conversion reached a maximum at 48.1% and ethylene selectivity peaked at 48.4%, whereas the total hydrocarbon selectivity exceeded 99%, representing an atom-economical transformation process of methane. The lattice-confined single iron sites delivered stable performance, with no deactivation observed during a 60-hour test.
Journal Article
Plant–Bacterial Degradation of Polyaromatic Hydrocarbons in the Rhizosphere
2019
Studies of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria and plant root exudate enzymes from contaminated rhizospheres suggest that pollutant rhizodegradation involves the joint work of bacteria and plants. Plant–microbial associations with coupled metabolic capabilities that completely degrade PAHs while avoiding the formation of dangerous intermediates are biotechnologically promising.
Journal Article
Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons
2018
The electrochemical reduction of CO2 to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO2 conversion to C2 products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C2 products. Here, we use boron to tune the ratio of Cuδ+ to Cu0 active sites and improve both stability and C2-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C2 products. We report experimentally a C2 Faradaic efficiency of 79 ± 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of ~40 hours while electrochemically reducing CO2 to multi-carbon hydrocarbons.
Journal Article
Controlling guest conformation for efficient purification of butadiene
by
Huang, Ning-Yu
,
Chen, Xiao-Ming
,
Zhang, Jie-Peng
in
Butadienes - isolation & purification
,
Chemistry Techniques, Analytical - methods
,
Computer Simulation
2017
Conventional adsorbents preferentially adsorb the small, high-polarity, and unsaturated 1,3-butadiene molecule over the other C₄ hydrocarbons from which it must be separated. We show from single-crystal x-ray diffraction and computational simulation that a hydrophilic metal-organic framework, [Zn₂(btm)₂], where H₂btm is bis(5-methyl-1H-1,2,4-triazol-3-yl)methane, has quasi-discrete pores that can induce conformational changes in the flexible guest molecules, weakening 1,3-butadiene adsorption through a large bending energy penalty. In a breakthrough operation at ambient temperature and pressure, this guest conformation–controlling adsorbent eluted 1,3-butadiene first, then butane, butene, and isobutene. Thus, 1,3-butadiene can be efficiently purified (≥99.5%) while avoiding high-temperature conditions that can lead to its undesirable polymerization.
Journal Article