Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,548
result(s) for
"LATS"
Sort by:
New strategies for probing$$B\\rightarrow D^\\ell \\bar{\\nu }_\\ell $$lattice and experimental data
by
Bordone, M.
,
Jüttner, A.
2025
We present an analysis of the exclusive semileptonic decay$$B\\rightarrow D^*\\ell \\bar{\\nu }_\\ell $$B → D ∗ ℓ ν ¯ ℓ based on the Belle and Belle II data made public in 2023, combined with recent lattice-QCD calculations of the hadronic transition form factors by FNAL/MILC, HPQCD and JLQCD. We also consider a new combination of the Belle and Belle II data sets by HFLAV. The analysis is based on the form-factor parameterisation by Boyd–Grinstein–Lebed (BGL), using Bayesian and frequentist statistics, for which we discuss novel strategies. We compare the results of an analysis where the BGL parameterisation is fit only to the lattice data with those from a simultaneous fit to lattice and experiment, and discuss the resulting predictions for the CKM-matrix element$${|V_{cb}|}$$| V cb | , as well as other phenomenological observables, such as$$R^{\\tau /\\mu }(D^*)$$R τ / μ ( D ∗ ) . We find tensions when comparing analyses based on different combinations of experimental or theoretical input, requiring the introduction of a systematic error for some of our results.
Journal Article
FLAG Review 2021
2022
We review lattice results related to pion, kaon, D-meson, B-meson, and nucleon physics with the aim of making them easily accessible to the nuclear and particle physics communities. More specifically, we report on the determination of the light-quark masses, the form factor f+(0) arising in the semileptonic K→π transition at zero momentum transfer, as well as the decay constant ratio fK/fπ and its consequences for the CKM matrix elements Vus and Vud. Furthermore, we describe the results obtained on the lattice for some of the low-energy constants of SU(2)L×SU(2)R and SU(3)L×SU(3)R Chiral Perturbation Theory. We review the determination of the BK parameter of neutral kaon mixing as well as the additional four B parameters that arise in theories of physics beyond the Standard Model. For the heavy-quark sector, we provide results for mc and mb as well as those for the decay constants, form factors, and mixing parameters of charmed and bottom mesons and baryons. These are the heavy-quark quantities most relevant for the determination of CKM matrix elements and the global CKM unitarity-triangle fit. We review the status of lattice determinations of the strong coupling constant αs. We consider nucleon matrix elements, and review the determinations of the axial, scalar and tensor bilinears, both isovector and flavor diagonal. Finally, in this review we have added a new section reviewing determinations of scale-setting quantities.
Journal Article
Targeting the Hippo Pathway for Breast Cancer Therapy
2018
Breast cancer (BC) is one of the most prominent diseases in the world, and the treatments for BC have many limitations, such as resistance and a lack of reliable biomarkers. Currently the Hippo pathway is emerging as a tumor suppressor pathway with its four core components that regulate downstream transcriptional targets. In this review, we introduce the present targeted therapies of BC, and then discuss the roles of the Hippo pathway in BC. Finally, we summarize the evidence of the small molecule inhibitors that target the Hippo pathway, and then discuss the possibilities and future direction of the Hippo-targeted drugs for BC therapy.
Journal Article
Global electroweak fit and vector-like leptons in light of the Cabibbo angle anomaly
by
Montull, Marc
,
Crivellin, Andreas
,
Manzari, Claudio Andrea
in
Beyond Standard Model
,
Classical and Quantum Gravitation
,
Couplings
2020
A
bstract
The “Cabibbo Angle Anomaly” (CAA) originates from the disagreement between the CKM elements
V
ud
and
V
us
extracted from superallowed beta and kaon decays, respectively, once compared via CKM unitarity. It points towards new physics with a significance of up to 4
σ
, depending on the theoretical input used, and can be explained through modified
W
couplings to leptons. In this context, vector-like leptons (VLLs) are prime candidates for a corresponding UV completion since they can affect
Wℓν
couplings at tree-level, such that this modification can have the dominant phenomenological impact. In order to consistently assess agreement data, a global fit is necessary which we perform for gauge-invariant dimension-6 operators and all patterns obtained for the six possible representations (under the SM gauge group) of VLLs. We find that even in the lepton flavour universal case, including the measurements of the CKM elements
V
us
and
V
ud
into the electroweak fit has a relevant impact, shifting the best fit point significantly. Concerning the VLLs we discuss the bounds from charged lepton flavour violating processes and observe that a single representation cannot describe experimental data significantly better than the SM hypothesis. However, allowing for several representations of VLLs at the same time, we find that the simple scenario in which
N
couples to electrons via the Higgs and Σ
1
couples to muons not only explains the CAA but also improves the rest of the electroweak fit in such a way that its best fit point is preferred by more than 4
σ
with respect to the begin.
Journal Article
50 Years of quantum chromodynamics
by
Guskov, Alexey
,
Sjöstrand, Torbjörn
,
de Téramond, Guy F
in
Approximation
,
Baryons
,
Basis functions
2023
Quantum Chromodynamics, the theory of quarks and gluons, whose interactions can be described by a local SU(3) gauge symmetry with charges called “color quantum numbers”, is reviewed; the goal of this review is to provide advanced Ph.D. students a comprehensive handbook, helpful for their research. When QCD was “discovered” 50 years ago, the idea that quarks could exist, but not be observed, left most physicists unconvinced. Then, with the discovery of charmonium in 1974 and the explanation of its excited states using the Cornell potential, consisting of the sum of a Coulomb-like attraction and a long range linear confining potential, the theory was suddenly widely accepted. This paradigm shift is now referred to as the November revolution. It had been anticipated by the observation of scaling in deep inelastic scattering, and was followed by the discovery of gluons in three-jet events. The parameters of QCD include the running coupling constant, αs(Q2), that varies with the energy scale Q2 characterising the interaction, and six quark masses. QCD cannot be solved analytically, at least not yet, and the large value of αs at low momentum transfers limits perturbative calculations to the high-energy region where Q2≫ΛQCD2≃ (250 MeV)2. Lattice QCD (LQCD), numerical calculations on a discretized space-time lattice, is discussed in detail, the dynamics of the QCD vacuum is visualized, and the expected spectra of mesons and baryons are displayed. Progress in lattice calculations of the structure of nucleons and of quantities related to the phase diagram of dense and hot (or cold) hadronic matter are reviewed. Methods and examples of how to calculate hadronic corrections to weak matrix elements on a lattice are outlined. The wide variety of analytical approximations currently in use, and the accuracy of these approximations, are reviewed. These methods range from the Bethe–Salpeter, Dyson–Schwinger coupled relativistic equations, which are formulated in both Minkowski or Euclidean spaces, to expansions of multi-quark states in a set of basis functions using light-front coordinates, to the AdS/QCD method that imbeds 4-dimensional QCD in a 5-dimensional deSitter space, allowing confinement and spontaneous chiral symmetry breaking to be described in a novel way. Models that assume the number of colors is very large, i.e. make use of the large Nc-limit, give unique insights. Many other techniques that are tailored to specific problems, such as perturbative expansions for high energy scattering or approximate calculations using the operator product expansion are discussed. The very powerful effective field theory techniques that are successful for low energy nuclear systems (chiral effective theory), or for non-relativistic systems involving heavy quarks, or the treatment of gluon exchanges between energetic, collinear partons encountered in jets, are discussed. The spectroscopy of mesons and baryons has played an important historical role in the development of QCD. The famous X,Y,Z states – and the discovery of pentaquarks – have revolutionized hadron spectroscopy; their status and interpretation are reviewed as well as recent progress in the identification of glueballs and hybrids in light-meson spectroscopy. These exotic states add to the spectrum of expected qq¯ mesons and qqq baryons. The progress in understanding excitations of light and heavy baryons is discussed. The nucleon as the lightest baryon is discussed extensively, its form factors, its partonic structure and the status of the attempt to determine a three-dimensional picture of the parton distribution. An experimental program to study the phase diagram of QCD at high temperature and density started with fixed target experiments in various laboratories in the second half of the 1980s, and then, in this century, with colliders. QCD thermodynamics at high temperature became accessible to LQCD, and numerical results on chiral and deconfinement transitions and properties of the deconfined and chirally restored form of strongly interacting matter, called the Quark–Gluon Plasma (QGP), have become very precise by now. These results can now be confronted with experimental data that are sensitive to the nature of the phase transition. There is clear evidence that the QGP phase is created. This phase of QCD matter can already be characterized by some properties that indicate, within a temperature range of a few times the pseudocritical temperature, the medium behaves like a near ideal liquid. Experimental observables are presented that demonstrate deconfinement. High and ultrahigh density QCD matter at moderate and low temperatures shows interesting features and new phases that are of astrophysical relevance. They are reviewed here and some of the astrophysical implications are discussed. Perturbative QCD and methods to describe the different aspects of scattering processes are discussed. The primary parton–parton scattering in a collision is calculated in perturbative QCD with increasing complexity. The radiation of soft gluons can spoil the perturbative convergence, this can be cured by resummation techniques, which are also described here. Realistic descriptions of QCD scattering events need to model the cascade of quark and gluon splittings until hadron formation sets in, which is done by parton showers. The full event simulation can be performed with Monte Carlo event generators, which simulate the full chain from the hard interaction to the hadronic final states, including the modelling of non-perturbative components. The contribution of the LEP experiments (and of earlier collider experiments) to the study of jets is reviewed. Correlations between jets and the shape of jets had allowed the collaborations to determine the “color factors” – invariants of the SU(3) color group governing the strength of quark–gluon and gluon–gluon interactions. The calculated jet production rates (using perturbative QCD) are shown to agree precisely with data, for jet energies spanning more than five orders of magnitude. The production of jets recoiling against a vector boson, W± or Z, is shown to be well understood. The discovery of the Higgs boson was certainly an important milestone in the development of high-energy physics. The couplings of the Higgs boson to massive vector bosons and fermions that have been measured so far support its interpretation as mass-generating boson as predicted by the Standard Model. The study of the Higgs boson recoiling against hadronic jets (without or with heavy flavors) or against vector bosons is also highlighted. Apart from the description of hard interactions taking place at high energies, the understanding of “soft QCD” is also very important. In this respect, Pomeron – and Odderon – exchange, soft and hard diffraction are discussed. Weak decays of quarks and leptons, the quark mixing matrix and the anomalous magnetic moment of the muon are processes which are governed by weak interactions. However, corrections by strong interactions are important, and these are reviewed. As the measured values are incompatible with (most of) the predictions, the question arises: are these discrepancies first hints for New Physics beyond the Standard Model? This volume concludes with a description of future facilities or important upgrades of existing facilities which improve their luminosity by orders of magnitude. The best is yet to come!
Journal Article
Dispersion relation for hadronic light-by-light scattering: two-pion contributions
by
Procura, Massimiliano
,
Hoferichter, Martin
,
Colangelo, Gilberto
in
Byproducts
,
Chiral Lagrangians
,
Classical and Quantum Gravitation
2017
A
bstract
In this third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (
g
− 2)
μ
, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of
γ
∗
γ
∗
→
ππ
. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box,
a
μ
π
− box
= − 15.9(2) × 10
− 11
. As an application of the partial-wave formalism, we present a first calculation of
ππ
-rescattering effects in HLbL scattering, with
γ
∗
γ
∗
→
ππ
helicity partial waves constructed dispersively using
ππ
phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the
f
0
(500) to HLbL scattering in (
g
− 2)
μ
. We argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its
S
-wave rescattering corrections reads
a
μ
π
‐ box
+
a
μ
,
J
= 0
ππ
,
π
‐ pole LHC
= − 24(1) × 10
− 11
.
Journal Article
Hadronic light-by-light contribution to (g-2)μ from lattice QCD: a complete calculation
by
Gérardin Antoine
,
En-Hung, Chao
,
Green, Jeremy R
in
Light
,
Light scattering
,
Mathematical analysis
2021
We compute the hadronic light-by-light scattering contribution to the muon g-2 from the up, down, and strange-quark sector directly using lattice QCD. Our calculation features evaluations of all possible Wick-contractions of the relevant hadronic four-point function and incorporates several different pion masses, volumes, and lattice-spacings. We obtain a value of aμHlbl=106.8(15.9)×10-11 (adding statistical and systematic errors in quadrature), which is consistent with current phenomenological estimates and a previous lattice determination. It now appears conclusive that the hadronic light-by-light contribution cannot explain the current tension between theory and experiment for the muon g-2.
Journal Article
A gamma-ray determination of the Universe’s star formation history
2018
How many stars have formed in the Universe, and when did they do so? These fundamental questions are difficult to answer because there are systematic uncertainties in converting the light we observe into the total mass of stars in galaxies. The Fermi-LAT Collaboration addressed these questions by exploiting the way that gamma rays from distant blazars propagate through intergalactic space, which depends on the total amount of light emitted by all galaxies. The collaboration found that star formation peaked about 3 billion years after the Big Bang (see the Perspective by Prandini). Although this is similar to previous estimates from optical and infrared observations, the results provide valuable confirmation because they should be affected by different systematic effects. Science , this issue p. 1031 ; see also p. 995 Intergalactic gamma rays are used to determine the star formation history of the Universe. The light emitted by all galaxies over the history of the Universe produces the extragalactic background light (EBL) at ultraviolet, optical, and infrared wavelengths. The EBL is a source of opacity for gamma rays via photon-photon interactions, leaving an imprint in the spectra of distant gamma-ray sources. We measured this attenuation using 739 active galaxies and one gamma-ray burst detected by the Fermi Large Area Telescope. This allowed us to reconstruct the evolution of the EBL and determine the star formation history of the Universe over 90% of cosmic time. Our star formation history is consistent with independent measurements from galaxy surveys, peaking at redshift z ~ 2. Upper limits of the EBL at the epoch of reionization suggest a turnover in the abundance of faint galaxies at z ~ 6.
Journal Article
Detection of the Characteristic Pion-Decay Signature in Supernova Remnants
2013
Cosmic rays are particles (mostly protons) accelerated to relativistic speeds. Despite wide agreement that supernova remnants (SNRs) are the sources of galactic cosmic rays, unequivocal evidence for the acceleration of protons in these objects is still lacking. When accelerated protons encounter interstellar material, they produce neutral pions, which in turn decay into gamma rays. This offers a compelling way to detect the acceleration sites of protons. The identification of pion-decay gamma rays has been difficult because high-energy electrons also produce gamma rays via bremsstrahlung and inverse Compton scattering. We detected the characteristic pion-decay feature in the gamma-ray spectra of two SNRs, IC 443 and W44, with the Fermi Large Area Telescope. This detection provides direct evidence that cosmic-ray protons are accelerated in SNRs.
Journal Article
Challenges in semileptonic B decays
2020
Two of the elements of the Cabibbo–Kobayashi–Maskawa quark mixing matrix,
|
V
ub
|
and
|
V
cb
|
, are extracted from semileptonic
B
decays. The results of the
B
factories, analysed in the light of the most recent theoretical calculations, remain puzzling, because for both
|
V
ub
|
and
|
V
cb
|
the exclusive and inclusive determinations are in clear tension. Further, measurements in the
τ
channels at Belle, Babar, and LHCb show discrepancies with the Standard Model predictions, pointing to a possible violation of lepton flavor universality. LHCb and Belle II have the potential to resolve these issues in the next few years. This article summarizes the discussions and results obtained at the MITP workshop held on April 9–13, 2018, in Mainz, Germany, with the goal to develop a medium-term strategy of analyses and calculations aimed at solving the puzzles. Lattice and continuum theorists working together with experimentalists have discussed how to reshape the semileptonic analyses in view of the much higher luminosity expected at Belle II, searching for ways to systematically validate the theoretical predictions in both exclusive and inclusive
B
decays, and to exploit the rich possibilities at LHCb.
Journal Article