Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
58
result(s) for
"LED lighting driver"
Sort by:
Bridgeless electrolytic capacitor-less valley-fill AC/DC converter for offline Twin-Bus light-emitting diode lighting application
by
Gu, Bin
,
Zheng, Cong
,
Ma, Hongbo
in
AC‐DC power convertors
,
bridgeless electrolytic capacitor less AC‐DC converter
,
Bridges (structures)
2013
To match the key features of light-emitting diode (LED) lighting source and further save power, LED lighting driver also requires long life, while maintaining high efficiency, high power factor, pulse-width modulation dimming and low cost. However, a typical LED lighting driver has the following drawbacks: (i) utilise bulky electrolytic capacitor as storage capacitor with short lifetime; (ii) employ a low-frequency diode bridge as the rectifier cell; and (iii) engage multiple stages cascade structure for multiple LED strings. To overcome the aforementioned shortages, this study proposed a bridgeless electrolytic capacitor-less AC/DC converter for offline LED lighting application. In the proposed converter, the conventional diode rectified bridge is replaced by Totem-pole bridgeless configuration for reducing the number of semiconductors in the line-current path. Meanwhile, the valley-fill circuit is introduced to further reduce the capacitor size. As comparison to its counterpart, the proposed circuit requires only one quarter of the capacitor energy when considering the energy amount (CV2) as the capacitor sizing criterion. Furthermore, the isolation type of the studied circuit is compatible with Twin-Bus configuration for achieving higher overall system efficiency. Finally, the experimental results, taken from a laboratory prototype rated at 50 W, are presented to verify the effectiveness of the proposed converter.
Journal Article
A 40 Mb/s VLC System Reusing an Existing Large LED Panel in an Indoor Office Environment
by
Ghassemlooy, Zabih
,
Haigh, Paul Anthony
,
Zvánovec, Stanislav
in
Bandwidths
,
bias-tee
,
carrierless amplitude and phase modulation (CAP)
2021
With advances in solid-state lighting, visible light communication (VLC) has emerged as a promising technology to enhance existing light-emitting diode (LED)-based lighting infrastructure by adding data communication capabilities to the illumination functionality. The last decade has witnessed the evolution of the VLC concept through global standardisation and product launches. Deploying VLC systems typically requires replacing existing light sources with new luminaires that are equipped with data communication functionality. To save the investment, it is clearly desirable to make the most of the existing illumination systems. This paper investigates the feasibility of adding data communication functionality to the existing lighting infrastructure. We do this by designing an experimental system in an indoor environment based on an off-the-shelf LED panel typically used in office environments, with the dimensions of 60 × 60 cm2. With minor modifications, the VLC function is implemented, and all of the modules of the LED panel are fully reused. A data rate of 40 Mb/s is supported at a distance of up to 2 m while using the multi-band carrierless amplitude and phase (CAP) modulation. Two main limiting factors for achieving higher data rates are observed. The first factor is the limited bandwidth of the LED string inside the panel. The second is the flicker due to the residual ripple of the bias current that is generated by the panel’s driver. Flicker is introduced by the low-cost driver, which provides bias currents that fluctuate in the low frequency range (less than several kilohertz). This significantly reduces the transmitter’s modulation depth. Concurrently, the driver can also introduce an effect that is similar to baseline wander at the receiver if the flicker is not completely filtered out. We also proposed a solution based on digital signal processing (DSP) to mitigate the flicker issue at the receiver side and its effectiveness has been confirmed.
Journal Article
Video-Based Analysis of a Smart Lighting Warning System for Pedestrian Safety at Crosswalks
by
Cameli, Leonardo
,
Lantieri, Claudio
,
Vignali, Valeria
in
Automobile drivers
,
Automobile safety
,
Beacons
2024
This study analyses five months of continuous monitoring of different lighting warning systems at a pedestrian crosswalk through video surveillance cameras during nighttime. Three different light signalling systems were installed near a pedestrian crossing to improve the visibility and safety of vulnerable road users: in-curb LED strips, orange flashing beacons, and asymmetric enhanced LED lighting. Seven different lighting configurations of the three systems were studied and compared with standard street lighting. The speed of vehicles for each pedestrian–driver interaction was also evaluated. This was then compared to the speed that vehicles should maintain in order to stop in time and allow pedestrians to cross the road safely. In all of the conditions studied, speeds were lower than those maintained in the five-month presence of standard street lighting (42.96 km/h). The results show that in conditions with dedicated flashing LED lighting, in-curb LED strips, and orange flashing beacons, most drivers (72%) drove at a speed that allowed the vehicle to stop safely compared to standard street lighting (10%). In addition, with this lighting configuration, the majority of vehicles (85%) stopped at pedestrian crossings, while in standard street lighting conditions only 26% of the users stopped to give way to pedestrians.
Journal Article
Integrated Circuits from Lighting Equipment: Presence and Characterisation of Precious Metals (Ag, Au, Pd, and Pt)
by
Fragkoulis, Dimitrios
,
Liogas, Konstantinos A.
,
Sinioros, Panagiotis
in
Chemical elements
,
driver
,
Electric lighting
2025
To reduce energy consumption in buildings and to maintain comfortable conditions, lighting equipment that includes light-emitting diode (LED) lamps and lighting management equipment is utilised. In this study, integrated circuits detached from lighting equipment were characterised for the presence of precious metals (silver, gold, palladium, and platinum). Their digestion was carried out with HNO3 and aqua regia solution on a hot plate and characterised using inductively coupled plasma optical emission spectroscopy (ICP-OES). The concentration of each element as a function of the type and origin of the integrated circuits varied as follows: silver, 652–3876 mg/kg; gold, 0–993 mg/kg; palladium, 0–74 mg/kg; and platinum was detected at a concentration below the quantification limit. These results indicate the need for selective removal and separate recycling processes for integrated circuits from the lighting equipment.
Journal Article
An Isolated AC-DC LED Electronic Lighting Driver Circuit with Power Factor Correction
by
Chang, En-Chih
,
Chang, Man-Tang
,
Cheng, Hung-Liang
in
Design
,
Driver circuits
,
Electric transformers
2025
Light-emitting diodes (LEDs) have gained widespread adoption as solid-state lighting sources due to their compact size, long operational lifetime, high brightness, and mechanical robustness. This paper presents the development and implementation of an isolated AC-DC LED electronic lighting driver circuit that integrates a modified flyback converter with a lossless snubber circuit, along with inherent power factor correction (PFC). The proposed design operates the transformer’s magnetizing inductor in the discontinuous conduction mode (DCM), thereby naturally achieving PFC without the need for complex control circuitry. Furthermore, the circuit is capable of recycling the energy stored in the transformer’s leakage inductance, improving overall efficiency. The input current harmonics are shown to comply with the IEC 61000-3-2 Class C standard. A 72 W (36 V/2 A) prototype has been constructed and tested under a 110 V AC input. Experimental results confirm the effectiveness of the proposed design, achieving a power factor of 0.9816, a total harmonic distortion (THD) of 12.094%, an output voltage ripple factor of 9.7%, and an output current ripple factor of 11.22%. These results validate the performance and practical viability of the proposed LED driver architecture.
Journal Article
Temperature Compensation for Chromatic Stability of RGBW LEDs in Automotive Interior Lighting
by
Falaschetti, Laura
,
Morici, Andrea
,
Rapaccini, Dennis
in
Algorithms
,
Automobiles
,
Brand identification
2025
Automotive interior lighting has progressed from basic functional illumination to sophisticated aesthetic systems emphasizing chromatic stability under thermal variations. This study enhances an RGB temperature compensation algorithm for LEDs, extending it to an RGBW solution. While several approaches for LED temperature compensation have been proposed in the literature, none have addressed a complete RGBW solution where the white channel is derived and actively adjusted on thermal variations. This research aims to fill this gap by extending an RGB algorithm to RGBW and validating it under realistic automotive conditions. While the proposed compensation strategies are general and may be applied to other LED systems, the automotive interior lighting domain has been selected as a representative case study because it combines stringent chromatic stability requirements (Δu′v′≤0.01) and high industrial relevance. Leveraging Infineon’s LITIX™ LED drivers, experimental results show that the algorithm maintains chromatic stability with deviations below Δu′v′=0.00562 in RGB mode and Δu′v′=0.0067 in RGBW mode across the tested temperature range. The addition of the white channel improves the color rendering index (CRI) by up to 58.9 points (from 19.7 to 78.6) while preserving color quality. Compared to previous works limited to RGB systems, our approach provides the first practical RGBW compensation algorithm experimentally validated under realistic automotive conditions.
Journal Article
A Single-Stage Electronic Lighting Driver Circuit Utilizing SiC Schottky Diodes for Supplying a Deep Ultraviolet LED Disinfection and Sterilization Lamp
by
Lin, Cheng-Kuan
,
Chang, En-Chih
,
Cheng, Hung-Liang
in
AC-DC converters
,
Buck converters
,
Carbon
2024
Recently, a new type of lighting source, deep ultraviolet light-emitting diode (LED), has appeared in the markets of space purification and surface sterilization. In this paper, a new type of electronic lighting driver for supplying a deep-ultraviolet LED sterilization lamp is proposed and developed. The main circuit combines a buck converter and a flyback converter into a single-stage single-switch buck-flyback AC-DC power converter with power factor correction. In addition, the proposed electronic lighting driver leverages a wide bandgap SiC Schottky diode as the output diode to lower the power diode losses and recycles the energy stored in the leakage inductance of the transformer in order to improve the circuit efficiency. The magnetizing inductor inside the presented AC-DC power converter is designed to operate in discontinuous conduction mode (DCM), which naturally enables power factor correction (PFC). A single-stage prototype driver with a power rating of 3.6 W (90 V/40 mA) was developed and implemented for providing a deep ultraviolet LED disinfection and sterilization lamp. Experimental results show that the measured power factor (PF) is greater than 0.9 and the measured total harmonic distortion (THD) of the input current is less than 18% at an input utility voltage of 110 V. Furthermore, the measured output voltage ripple factor is less than 1% and the output current ripple factor is less than 4%. In addition, the proposed single-stage electronic lighting driver for supplying a deep ultraviolet LED disinfection and sterilization lamp achieves high circuit efficiency (greater than 90%), low circuit component count, and low circuit cost.
Journal Article
Development of DC-Powered LED Lamp Driver Circuit for Outdoor Emergency Lighting Applications
by
Chang, En-Chih
,
Cheng, Hung-Liang
,
Chang, Hsiang-Lin
in
Circuit design
,
Comparative analysis
,
Design
2025
In the event of power outages caused by natural disasters, accidents, or other emergencies, outdoor emergency lighting systems play a critical role in providing illumination to maintain spatial orientation, facilitate evacuation procedures, and help individuals avoid hazardous areas or locate safe shelters. Compared to traditional lighting technologies, LED-based outdoor emergency lighting offers several advantages, including compact size, long operational lifespan, low energy consumption, high safety, resistance to breakage, and the absence of chemical residue or pollution. These characteristics align with contemporary trends in environmental sustainability and energy efficiency. This study proposes a novel LED driver circuit architecture for outdoor emergency lighting applications. The primary circuit topology is based on an improved buck-boost converter integrated with a flyback converter, forming a hybrid buck-boost-flyback configuration. The proposed circuit is capable of recycling the energy stored in the transformer’s leakage inductance, thereby enhancing overall power conversion efficiency. A 12 W (20 V/0.6 A) prototype LED driver circuit was designed and implemented to validate the performance of the proposed system. Experimental measurements, including waveform analysis and efficiency evaluation, demonstrate that the driver circuit achieves a high efficiency exceeding 91%. These results confirm the practical feasibility and effectiveness of the proposed electronic driver for LED-based outdoor emergency lighting applications.
Journal Article
High-Frequency LLC Resonant Converter with GaN Devices and Integrated Magnetics
by
Syu, Yong-Long
,
Tsai, Meng-Chi
,
Chen, Chen
in
adjustable leakage inductance
,
Design
,
Efficiency
2019
In this study, a light emitting diode (LED) driver containing an integrated transformer with adjustable leakage inductance in a high-frequency isolated LLC resonant converter was proposed as an LED lighting power converter. The primary- and secondary-side topological structures were analyzed from the perspectives of component loss and component stress, and a full-bridge structure was selected for both the primary- and secondary-side circuit architecture of the LLC resonant converter. Additionally, to achieve high power density and high efficiency, adjustable leakage inductance was achieved through an additional reluctance length, and the added resonant inductor was replaced with the transformer leakage inductance without increasing the amount of loss caused by the proximity effect. To optimize the transformer, the number of primary- and secondary-side windings that resulted in the lowest core loss and copper loss was selected, and the feasibility of the new core design was verified using ANSYS Maxwell software. Finally, this paper proposes an integrated transformer without any additional resonant inductor in the LLC resonant converter. Transformer loss is optimized by adjusting parameters of the core structure and the winding arrangement. An LLC resonant converter with a 400 V input voltage, 300 V output voltage, 1 kW output power, and 500 kHz switching frequency was created, and a maximum efficiency of 97.03% was achieved. The component with the highest temperature was the transformer winding, which reached 78.6 °C at full load.
Journal Article
On-Line Diagnostics of Electrolytic Capacitors in Fault-Tolerant LED Lighting Systems
by
Laadjal, Khaled
,
Bento, Fernando
,
Cardoso, Antonio J. Marques
in
Aluminum
,
Capacitors
,
Component reliability
2022
As technology advances, the utilization of lighting systems based on light-emitting diode (LED) technology is becoming increasingly essential, given its benefits in terms of efficiency, reliability, and lifespan. Unfortunately, the power electronic components required to drive LEDs are unable to compete with LED devices in terms of lifetime. Aluminum electrolytic capacitor (AEC) failures represent the root cause of power electronic equipment breakdown, mainly through both aging and temperature effects. This highlights the importance of designing robust power converter architectures and control methods that allow the evaluation of the condition of electrolytic capacitors while maintaining the performance of converter controllers, even in the presence of capacitor failure. On this basis, this work proposes a novel condition-monitoring system for the diagnosis of capacitor faults on a fault-tolerant LED driver, which is able to deal with the specific architecture and low ratings of the most recent LED lighting systems. The fault-detection task applies the short time least square Prony’s (STLSP) approach to perform an online estimation of the ESR and C parameters, allowing the continuous evaluation of the electrolytic capacitor’s condition and, as a result, the prevention of total system failure. With regard to capacitor failure, the experimental results suggest that the condition-monitoring task is extremely effective, even when considering a limited number of data samples.
Journal Article