Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
12,685 result(s) for "LEVEL OF EMISSIONS"
Sort by:
Methods and Techniques for CO2 Capture: Review of Potential Solutions and Applications in Modern Energy Technologies
The paper presents and discusses modern methods and technologies of CO2 capture (pre-combustion capture, post-combustion capture, and oxy-combustion capture) along with the principles of these methods and examples of existing and operating installations. The primary differences of the selected methods and technologies, with the possibility to apply them in new low-emission energy technologies, were presented. The following CO2 capture methods: pre-combustion, post-combustion based on chemical absorption, physical separation, membrane separation, chemical looping combustion, calcium looping process, and oxy-combustion are discussed in the paper. Large-scale carbon capture utilization and storage (CCUS) facilities operating and under development are summarized. In 2021, 27 commercial CCUS facilities are currently under operation with a capture capacity of up to 40 Mt of CO2 per year. If all projects are launched, the global CO2 capture potential can be more than ca. 130–150 Mt/year of captured CO2. The most popular and developed indicators for comparing and assessing CO2 emission, capture, avoiding, and cost connected with avoiding CO2 emissions are also presented and described in the paper.
Performance Evaluation of Fixed-Point Continuous Monitoring Systems: Influence of Averaging Time in Complex Emission Environments
Quantifying methane emissions from facilities with complex emissions profiles can present a substantial challenge. Real-world emission scenarios can involve dynamic operational background emissions and temporally overlapping asynchronous emission events with varying rates from multiple sources. Previous studies have involved simpler testing setups, often with synchronous emission sources and constant rates. This work is among the first to assess the performance of continuous monitoring systems (CMSs) under dynamic, overlapping emission scenarios with time-varying baselines. The data were collected as part of a novel single-blind controlled release study, where release sources and emission rates are not disclosed during the testing period. Several error metrics are defined and evaluated across a range of relevant averaging times, demonstrating that despite significant error variance in short-duration estimates, the low bias of the system results in substantially improved emission estimates when aggregated to longer timescales. Over the 4-week duration of this study, 700 kg of methane was released by the testing center, while the estimated quantity shows a final mass of 673 kg, an underestimation by 27 kg (4%). These results demonstrate that advanced CMSs can accurately quantify cumulative site-level emissions in complex scenarios, highlighting their potential for enhanced future emissions monitoring and regulatory applications in the oil and gas sector.
Turning the right corner
This report 'Turning the right corner - ensuring development through a low carbon transport sector' emphasizes that developing countries need to transition to a low carbon transport sector now to avoid locking themselves into an unsustainable and costly future. Furthermore, it argues that this transition can be affordable if countries combine policies to reduce greenhouse gas emissions with broader sector reforms aimed at reducing local air pollution, road safety risks, and congestion. This report looks at relationships between mobility, low carbon transport and development, drawing attention to the inertia in transport infrastructure. It complements the analysis by reviewing how climate change is likely to affect operations and infrastructure, cost-effective measures for minimizing negative effects, and policies and decision frameworks. It further highlights current and projected research findings and examples from developing countries. And it concludes that new technology is not enough, and that urgent action is needed before economies become locked into high-carbon growth. It discusses how to reconcile development with the need to curb emissions, looking at three sets of instruments and their limitations: new technologies and alternative fuels, supply-side measures, and demand-side policies. This report also looks at both available funding, such as carbon financing and international assistance, and at ways to generate new resources, considering that accounting for negative externalities dramatically alters the economics of transport investment.
Minimizing emissions from grid-based hydrogen production in the United States
Low-carbon hydrogen could be an important component of a net-zero carbon economy, helping to mitigate emissions in a number of hard-to-abate sectors. The United States recently introduced an escalating production tax credit (PTC) to incentivize production of hydrogen meeting increasingly stringent embodied emissions thresholds. Hydrogen produced via electrolysis can qualify for the full subsidy under current federal accounting standards if the input electricity is generated by carbon-free resources, but may fail to do so if emitting resources are present in the generation mix. While use of behind-the-meter carbon-free electricity inputs can guarantee compliance with this standard, the PTC could also be structured to allow producers using grid-supplied electricity to qualify subject to certain clean energy procurement requirements. Herein we use electricity system capacity expansion modeling to quantitatively assess the impact of grid-connected electrolysis on the evolution of the power sector in the western United States through 2030 under multiple possible implementations of the clean hydrogen PTC. We find that subsidized grid-connected hydrogen production has the potential to induce additional emissions at effective rates worse than those of conventional, fossil-based hydrogen production pathways. Emissions can be minimized by requiring grid-based hydrogen producers to match 100% of their electricity consumption on an hourly basis with physically deliverable, ‘additional’ clean generation, which ensures effective emissions rates equivalent to electrolysis exclusively supplied by behind-the-meter carbon-free generation. While these requirements cannot eliminate indirect emissions caused by competition for limited clean resources, which we find to be a persistent result of large hydrogen production subsidies, they consistently outperform alternative approaches relying on relaxed time matching or marginal emissions accounting. Added hydrogen production costs from enforcing an hourly matching requirement rather than no requirements are less than $1 kg −1 , and can be near zero if clean, firm electricity resources are available for procurement.
Multi-Objective Economic Environmental Dispatch of Variable Hydro-Wind-Thermal Power System
This article presents a multi-objective economic environmental/emission dispatch (EED) of variable head hydro-wind-thermal power system. The combination of NOx emission, SO2 emission, and fuel cost are minimized for non-smooth hydrothermal plants while satisfying various operational constraints like non-smooth fuel cost, penalty coefficient, and wind power uncertainty. The objectives—cost, NOx emission, and SO2 emission—are optimized at the same time. In this research, the non-dominated sorting genetic algorithm-II (NSGA-II) has been employed for solving the given problem where the total cost, NOx emission level, and SO2 emission level are optimized at the same time while satisfying all the operational constraints. The simulation results that are obtained by applying the two test systems on the proposed scheme have been evaluated against strength pareto evolutionary algorithm 2 (SPEA 2).
Research on evaluation of Wuhan air pollution emission level based on entropy weight method
For the lack of precise monitoring and accurate assessment models for air quality, this paper fully considers such constraints and establishes an evaluation model of air pollution emission level to evaluate the air pollution emission level of Wuhan—a city in central China. The model uses entropy weight method including important indicators of air pollution into the integrated optimization of air quality assessment, laying the basis for sources of pollution and the reasonable and effective city development. The total emissions of air pollution for Wuhan shows a gradual upward trend over time, mainly coming from industrial pollution. The government can reduce air pollution by focusing on detecting major polluting industries, promoting industrial technological progress and innovation, and strengthening the effective implementation of emission trading system.
Does a Polycentric Spatial Structure Help to Reduce Industry Emissions?
City planners are increasingly drawn to ways of transforming urban spatial structure as an important strategy for reducing pollutant emissions. As its main contribution, this paper uses firm-level emissions data to quantify impact mechanisms related to factor flow, firm size, and division of labour. We examine the effects of spatial polycentricity on firm-level industrial emissions, using a pooled cross-sectional model, based on emissions data from individual firms in China. We show that, all else being equal, polycentric spatial structures help to reduce the emissions of industrial firms. This finding is not affected by index measures, changes in industrial structure, or city-sample selection. A mechanism analysis shows that polycentric structures not only enhance the emission-reduction effects of factor flow and firm size, but also reduce firm-level emissions by strengthening the urban division of labour. Our findings support the emission-reduction performance of polycentric spatial structures, promoting the integration of city planning and industrial policies that jointly contribute to reducing firm-level emissions and preventing and controlling air pollution.
Cost-Sharing Contracts for Energy Saving and Emissions Reduction of a Supply Chain under the Conditions of Government Subsidies and a Carbon Tax
To study the cooperation of upstream and downstream enterprises of a supply chain in energy saving and emissions reduction, we establish a Stackelberg game model. The retailer moves first to decide a cost-sharing contract, then the manufacturer determines the energy-saving level, carbon-emission level, and wholesale price successively. In the end, the retailer determines the retail price. As a regulation, the government provides subsidies for energy-saving products, while imposing a carbon tax on the carbon emitted. The results show that (1) both the energy-saving cost-sharing (ECS) and the carbon emissions reduction cost-sharing (CCS) contracts are not the dominant strategy of the two parties by which they can facilitate energy savings and emissions reductions; (2) compared with single cost-sharing contracts, the bivariate cost-sharing (BCS) contract for energy saving and emissions reduction is superior, although it still cannot realise prefect coordination of the supply chain; (3) government subsidy and carbon tax policies can promote the cooperation of both the upstream and downstream enterprises of the supply chain—a subsidy policy can always drive energy saving and emissions reductions, while a carbon tax policy does not always exert positive effects, as it depends on the initial level of pollution and the level of carbon tax; and (4) the subsidy policy reduces the coordination efficiency of the supply chain, while the influences of carbon tax policy upon the coordination efficiency relies on the initial carbon-emission level.
Deriving emission factors for mangrove blue carbon ecosystem in Indonesia
BackgroundUsing ‘higher-tier’ emission factors in National Greenhouse Gas Inventories is essential to improve quality and accuracy when reporting carbon emissions and removals. Here we systematically reviewed 736 data across 249 sites (published 2003–2020) to derive emission factors associated with land-use change in Indonesian mangroves blue carbon ecosystems.ResultsFour management regimes—aquaculture, degraded mangrove, regenerated mangrove and undisturbed mangrove—gave mean total ecosystem carbon stocks of 579, 717, 890, and 1061 Mg C ha−1 respectively. The largest biomass carbon stocks were found in undisturbed mangrove; followed by regenerated mangrove, degraded mangrove, and aquaculture. Top 100-cm soil carbon stocks were similar across regimes, ranging between 216 and 296 Mg C ha−1. Carbon stocks between 0 and 300 cm varied significantly; the highest values were found in undisturbed mangrove (916 Mg C ha−1), followed by regenerated mangrove (803 Mg C ha−1), degraded mangrove 666 Mg C ha−1), and aquaculture (562 Mg C ha−1).ConclusionsUsing deep layer (e.g., 300 cm) soil carbon stocks would compensate for the underestimation of surface soil carbon removed from areas where aquaculture is widely practised. From a project perspective, deep layer data could secure permanence or buffer potential leakages. From a national GHG accounting perspective, it also provides a safeguard in the MRV system.
Compressor Degradation Management Strategies for Gas Turbine Aero-Engine Controller Design
The Advisory Council for Aeronautics Research in Europe (ACARE) Flight Path 2050 focuses on ambitious and severe targets for the next generation of air travel systems (e.g., 75% reduction in CO2 emissions per passenger kilometre, a 90% reduction in NOx emissions, and a 65% reduction in the noise emissions of flying aircraft relative to the capabilities of typical new aircraft in 2000). Degradation is an inevitable phenomenon as aero-engines age with significant impacts on the engine performance, emissions level, and fuel consumption. The engine control system is a key element capable of coping with degradation consequences subject to the implementation of an advanced management strategy. This paper demonstrates a methodological approach for aero-engine controller adjustment to deal with degradation implications, such as emission levels and increased fuel consumption. For this purpose, a component level model for an aero-engine was first built and transformed to a block-structured Wiener model using a system identification approach. An industrial Min-Max control strategy was then developed to satisfy the steady state and transient limit protection requirements simultaneously while satisfying the physical limitation control modes, such as over-speed, surge, and over-temperature. Next, the effects of degradation on the engine performance and associated changes to the controller were analysed thoroughly to propose practical degradation management strategies based on a comprehensive scientometric analysis of the topic. The simulation results show that the proposed strategy was effective in restoring the degraded engine performance to the level of the clean engine while protecting the engine from physical limitations. The proposed adjustments in the control strategy reduced the fuel consumption and, as a result, the emission level and carbon footprint of the engine.