Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
36
result(s) for
"LFY gene"
Sort by:
Hormones regulate the flowering process in saffron differently depending on the developmental stage
2023
Flowering in saffron is a highly complex process regulated by the synchronized action of environmental cues and endogenous signals. Hormonal regulation of flowering is a very important process controlling flowering in several plants, but it has not been studied in saffron. Flowering in saffron is a continual process completed in months with distinct developmental phases, mainly divided into flowering induction and flower organogenesis/formation. In the present study, we investigated how phytohormones affect the flowering process at different developmental stages. The results suggest that different hormones differentially affect flower induction and formation in saffron. The exogenous treatment of flowering competent corms with abscisic acid (ABA) suppressed both floral induction and flower formation, whereas some other hormones, like auxins (indole acetic acid, IAA) and gibberellic acid (GA), behaved contrarily at different developmental stages. IAA promoted flower induction, while GA suppressed it; however, GA promoted flower formation, whereas IAA suppressed it. Cytokinin (kinetin) treatment suggested its positive involvement in flower induction and flower formation. The expression analysis of floral integrator and homeotic genes suggests that ABA might suppress floral induction by suppressing the expression of the floral promoter (LFY, FT3) and promoting the expression of the floral repressor ( SVP ) gene. Additionally, ABA treatment also suppressed the expression of the floral homeotic genes responsible for flower formation. GA reduces the expression of flowering induction gene LFY , while IAA treatment upregulated its expression. In addition to these genes, a flowering repressor gene, TFL1-2 , was also found to be downregulated in IAA treatment. Cytokinin promotes flowering induction by increasing the expression levels of the LFY gene and decreasing the TFL1-2 gene expression. Moreover, it improved flower organogenesis by increasing the expression of floral homeotic genes. Overall, the results suggest that hormones differently regulate flowering in saffron via regulating floral integrator and homeotic gene expression.
Journal Article
plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes
by
Van Der Straeten, Dominique
,
Genschik, Pascal
,
Moritz, Thomas
in
Arabidopsis - metabolism
,
Arabidopsis - physiology
,
Arabidopsis Proteins - genetics
2007
The length of the Arabidopsis thaliana life cycle depends on the timing of the floral transition. Here, we define the relationship between the plant stress hormone ethylene and the timing of floral initiation. Ethylene signaling is activated by diverse environmental stresses, but it was not previously clear how ethylene regulates flowering. First, we show that ethylene delays flowering in Arabidopsis, and that this delay is partly rescued by loss-of-function mutations in genes encoding the DELLAs, a family of nuclear gibberellin (GA)-regulated growth-repressing proteins. This finding suggests that ethylene may act in part by modulating DELLA activity. We also show that activated ethylene signaling reduces bioactive GA levels, thus enhancing the accumulation of DELLAs. Next, we show that ethylene acts on DELLAs via the CTR1-dependent ethylene response pathway, most likely downstream of the transcriptional regulator EIN3. Ethylene-enhanced DELLA accumulation in turn delays flowering via repression of the floral meristem-identity genes LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Our findings establish a link between the CTR1/EIN3-dependent ethylene and GA-DELLA signaling pathways that enables adaptively significant regulation of plant life cycle progression in response to environmental adversity.
Journal Article
The efficacy of CRISPR-mediated cytosine base editing with the RPS5a promoter in Arabidopsis thaliana
by
Yun, Jae-Young
,
Kim, Jun-Hyuk
,
Choi, Minkyung
in
631/1647/1511
,
631/449/1659
,
Activation-induced cytidine deaminase
2021
CRISPR/Cas9-mediated genome editing is an important and versatile technology in modern biological research. Recent advancements include base-editing CRISPR tools that enable targeted nucleotide substitutions using a fusion protein comprising a nickase variant of Cas9 and a base deaminase. Improvements in base editing efficiencies and inheritable of edited loci need to be made to make CRISPR a viable system in plants. Here, we report efficiency of cytosine base editors (CBEs) in
Arabidopsis thaliana
by applying the strong endogenous RPS5a promoter to drive the expression of nickase Cas9 and either rAPOBEC1 from rat (BE3) or the PmCDA1 activation-induced cytidine deaminase from sea lamprey (AIDv2). Compared with the strong heterologous CaMV35S promoter of viral origin, the RPS5a promoter improved CBE efficiency by 32% points with the number of T
1
plants showing over 50% conversion ratio when the
LFY
gene was targeted. CBE induced nonsense mutations in
LFY
via C-to-T conversion, which resulted in loss-of-function
lfy
phenotypes; defects in
LFY
function were associated with the targeted base substitutions. Our data suggest that optimal promoter choice for CBE expression may affect base-editing efficiencies in plants. The results provide a strategy to optimize low-efficiency base editors and demonstrate their applicability for functional assays and trait development in crop research.
Journal Article
gene regulatory network model for cell-fate determination during Arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles
by
Padilla-Longoria, P
,
Espinosa-Soto, C
,
Alvarez-Buylla, E.R
in
Arabidopsis
,
Arabidopsis - genetics
,
Arabidopsis - growth & development
2004
Flowers are icons in developmental studies of complex structures. The vast majority of 250,000 angiosperm plant species have flowers with a conserved organ plan bearing sepals, petals, stamens, and carpels in the center. The combinatorial model for the activity of the so-called ABC homeotic floral genes has guided extensive experimental studies in Arabidopsis thaliana and many other plant species. However, a mechanistic and dynamical explanation for the ABC model and prevalence among flowering plants is lacking. Here, we put forward a simple discrete model that postulates logical rules that formally summarize published ABC and non-ABC gene interaction data for Arabidopsis floral organ cell fate determination and integrates this data into a dynamic network model. This model shows that all possible initial conditions converge to few steady gene activity states that match gene expression profiles observed experimentally in primordial floral organ cells of wild-type and mutant plants. Therefore, the network proposed here provides a dynamical explanation for the ABC model and shows that precise signaling pathways are not required to restrain cell types to those found in Arabidopsis, but these are rather determined by the overall gene network dynamics. Furthermore, we performed robustness analyses that clearly show that the cell types recovered depend on the network architecture rather than on specific values of the model's gene interaction parameters. These results support the hypothesis that such a network constitutes a developmental module, and hence provide a possible explanation for the overall conservation of the ABC model and overall floral plan among angiosperms. In addition, we have been able to predict the effects of differences in network architecture between Arabidopsis and Petunia hybrida.
Journal Article
Nitric oxide represses the Arabidopsis floral transition
by
Tang, R.H
,
Cook, C.W
,
Chen, L
in
Arabidopsis - drug effects
,
Arabidopsis - genetics
,
Arabidopsis - physiology
2004
The correct timing of flowering is essential for plants to maximize reproductive success and is controlled by environmental and endogenous signals. We report that nitric oxide (NO) repressed the floral transition in Arabidopsis thaliana. Plants treated with NO, as well as a mutant overproducing NO (nox1), flowered late, whereas a mutant producing less NO (nos1) flowered early. NO suppressed CONSTANS and GIGANTEA gene expression and enhanced FLOWERING LOCUS C expression, which indicated that NO regulates the photoperiod and autonomous pathways. Because NO is induced by environmental stimuli and constitutively produced, it may integrate both external and internal cues into the floral decision.
Journal Article
Evolution and expression of LEAFY genes in ferns and lycophytes
by
Rodríguez-Pelayo, Carolina
,
Pabón-Mora, Natalia
,
Alzate, Juan F.
in
Algae
,
Biomedical and Life Sciences
,
Cell division
2022
Background
The
LEAFY
(
LFY
) transcription factors are present in algae and across land plants. The available expression and functional data of these genes in embryophytes suggest that
LFY
genes control a plethora of processes including the first zygotic cell division in bryophytes, shoot cell divisions of the gametophyte and sporophyte in ferns, cone differentiation in gymnosperms and floral meristem identity in flowering plants. However, their putative plesiomorphic role in plant reproductive transition in vascular plants remains untested.
Results
We perform Maximum Likelihood (ML) phylogenetic analyses for the
LFY
gene lineage in embryophytes with expanded sampling in lycophytes and ferns. We recover the previously identified seed plant duplication that results in
LEAFY
and
NEEDLY
paralogs. In addition, we recover multiple species-specific duplications in ferns and lycophytes and large-scale duplications possibly correlated with the occurrence of whole genome duplication (WGD) events in Equisetales and Salviniales. To test putative roles in diverse ferns and lycophytes we perform
LFY
expression analyses in
Adiantum raddianum
,
Equisetum giganteum
and
Selaginella moellendorffii.
Our results show that
LFY
genes are active in vegetative and reproductive tissues, with higher expression in early fertile developmental stages and during sporangia differentiation.
Conclusions
Our data point to previously unrecognized roles of
LFY
genes in sporangia differentiation in lycophytes and ferns and suggests that functions linked to reproductive structure development are not exclusive to seed plant
LFY
homologs.
Journal Article
Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome
by
Al-Harrasi, Ahmed
,
Jan, Rahmatullah
,
Khan, Muhammad Aaqil
in
Abscisic acid
,
Auxins
,
Complexity
2025
In ornamental plants, one of the most complex life processes, i.e., flowering, is regulated by interaction between the microbiota, hormones, and genes. Flowering plays an integral role in overall development and is quintessential for reproduction. Considering its importance, this review explores the complex mechanisms that determine the induction of flowering, highlighting the relationship between hormonal and genetic networks as well as the growing significance of the microbiome. Important genes involved in genetic control include FT, SOC1, and LFY. These genes react to environmental stimuli like photoperiod and vernalization. Auxins, cytokinin, and gibberellins are only a few hormone pathways important for floral growth and timing. The importance of plant–microbe interactions has been emphasized by current research, which shows that the microbiome affects flowering through processes like hormone production and availability of food. A comprehensive understanding of flowering induction is possible by integrating results from microbiota, hormones, and genetics studies, which may improve the breeding and culture of ornamental plants. For researchers to understand the complexity of flowering in ornamental plants and develop unique breeding strategies and improved floral qualities, it is critical to use interdisciplinary approaches, as this comprehensive investigation demonstrates.
Journal Article
Genomic identification of direct target genes of LEAFY
by
Baldwin, D.A
,
William, D.A
,
Su, Y
in
APETALA1 gene
,
Application programming interfaces
,
Biological Sciences
2004
The switch from vegetative to reproductive development in plants necessitates a switch in the developmental program of the descendents of the stem cells in the shoot apical meristem. Genetic and molecular investigations have demonstrated that the plant-specific transcription factor and meristem identity regulator LEAFY (LFY) controls this developmental transition by inducing expression of a second transcription factor, APETALA1, and by regulating the expression of additional, as yet unknown, genes. Here we show that the additional LFY targets include the APETALA1-related factor, CAULIFLOWER, as well as three transcription factors and two putative signal transduction pathway components. These genes are up-regulated by LFY even when protein synthesis is inhibited and, hence, appear to be direct targets of LFY. Supporting this conclusion, cis-regulatory regions upstream of these genes are bound by LFY in vivo. The newly identified LFY targets likely initiate the transcriptional changes that are required for the switch from vegetative to reproductive development in Arabidopsis.
Journal Article
Effects of Sugar on Vegetative Development and Floral Transition in Arabidopsis
by
Kiyoshi Onai
,
Nakamura, Kenzo
,
Yasuko Furukawa
in
Anthocyanins
,
Anthocyanins - metabolism
,
application rate
2001
Although sugar has been suggested to promote floral transition in many plant species, growth on high concentrations (5% [w/v]) of sucrose (Suc) significantly delayed flowering time, causing an increase in the number of leaves at the time of flowering in Arabidopsis. The effect of high concentrations of Suc seemed to be metabolic rather than osmotic. The delay of floral transition was due to extension of the late vegetative phase, which resulted in a delayed activation of LFY expression. In addition, growth on low concentrations (1% [w/v]) of Suc slightly inhibited flowering in wild-type plants. This delay resulted from effects on the early vegetative phase. This inhibition was more pronounced in tfl1, an early flowering mutant, than in the wild type. Although 1% (w/v) Suc was reported to promote floral transition of late-flowering mutants such as co, fca, and gi, floral transition in these mutants was delayed by a further increase in Suc concentration. These results suggest that sugar may affect floral transition by activating or inhibiting genes that act to control floral transition, depending on the concentration of sugars, the genetic background of the plants, and when the sugar is introduced. Growth on 1% (w/v) Suc did not restore the reduced expression levels of FT and SOC1/AGL20 in co or fca mutants. Rather, expression of FT and SOC1/AGL20 was repressed by 1% (w/v) Suc in wild-type background. The possible effects of sugar on gene expression to promote floral transition are discussed.
Journal Article
Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time
2001
Citrus trees have a long juvenile phase that delays their reproductive development by between 6 and 20 years, depending on the species. With the aim of accelerating their flowering time, we transformed juvenile citrus seedlings to constitutively express the Arabidopsis LEAFY(LFY) or APETALA1 (AP1) genes, which promote flower initiation in Arabidopsis. Both types of transgenic citrus produced fertile flowers and fruits as early as the first year, notably through a mechanism involving an appreciable shortening of their juvenile phase. Furthermore, expression of AP1 was as efficient as LFY in the initiation of flowers, and did not produce any severe developmental abnormality. Both types of transgenic trees flowered in consecutive years, and their flowering response was under environmental control. In addition, zygotic and nucellar derived transgenic seedlings had a very short juvenile phase and flowered in their first spring, demonstrating the stability and inheritance of this trait. These results open new possibilities for domestication, genetic improvement, and experimental research in citrus and other woody species.
Journal Article