Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
2 result(s) for "LINC00294"
Sort by:
LINC00294 induced by GRP78 promotes cervical cancer development by promoting cell cycle transition
Cervical cancer is one of the most common gynecological malignancies, and it has become a crucial public health problem. In the present study, the expression profiles of cervical cancer and normal cervical tissues were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas databases. Subsequently, the dysregulated long non-coding RNAs (lncRNAs) in cervical cancer were identified using R software Differentially expressed lncRNAs in cervical cancer that were associated with glucose-regulated protein 78 (GRP78) were screened out and the results demonstrated that eight lncRNAs were strongly positively correlated with GRP78. In order to confirm the relationship between GRP78 and candidate lncRNAs, GRP78 small interfering RNA (siRNA) was transfected into HeLa cells. The target lncRNAs that were regulated by GRP78 were then identified by reverse transcription-quantitative PCR and it was revealed that LINC00294 was significantly downregulated following GRP78-knockdown. Subsequently, Gene Set Enrichment Analysis demonstrated that LINC00294 was mainly enriched in regulating the cell cycle and the Hedgehog pathway. Following transfection of HeLa and SiHa cells with LINC00294 siRNA, the cell cycle was arrested at the G0/G1 phase. Western blotting suggested that LINC00294-knockdown downregulated the expression of cell cycle-associated factors (cyclin D, cyclin E and cyclin Dependent kinase 4) and upregulated cell cycle inhibitory factors (p16 and p21). The Hedgehog pathway was inhibited following knockdown of LINC00294 in HeLa and SiHa cells. In summary, LINC00294 induced by GRP78 promoted the progression of cervical cancer by regulating the cell cycle via Hedgehog pathway.
Bakkenolide-IIIa ameliorates lipopolysaccharide-induced inflammatory injury in human umbilical vein endothelial cells by upregulating LINC00294
Inflammation, which causes injury to vascular endothelial cells, is one of the major factors associated with atherosclerosis (AS); therefore, inhibition of endothelial inflammation is a key step toward preventing AS. The present study aimed to investigate the effects of bakkenolide-IIIa (Bak-IIIa), an important active component of bakkenolides, on endothelial inflammation, as well as the mechanisms underlying such effects. Lipopolysaccharide (LPS)-damaged human umbilical vein endothelial cells (HUVECs) were treated with Bak-IIIa. The results of the MTT assay and enzyme-linked immunosorbent assay indicated that Bak-IIIa significantly alleviated survival inhibition, and decreased the levels of LPS-induced TNF-α, interleukin (IL)-1β, IL-8, and IL-6. Furthermore, long noncoding RNA (lncRNA) microarray analyses revealed 70 differentially expressed lncRNAs (DELs) in LPS-damaged HUVECs treated with Bak-IIIa. lncRNA target prediction results revealed that 44 DELs had 52 cis-targets, whereas 12 DELs covered 386 trans-targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses of the trans-targets indicated that three GO terms were associated with inflammation. Therefore, 17 targets involved in these GO terms and six relevant DELs were screened out. Validation via reverse transcription-quantitative PCR indicated that the fold change of NR_015451 (LINC00294) was the highest among the six candidates and that overexpression of LINC00294 significantly alleviated LPS-induced survival inhibition and inflammatory damage in HUVECs. In conclusion, Bak-IIIa ameliorated LPS-induced inflammatory damage in HUVECs by upregulating LINC00294. Thus, Bak-IIIa exhibited potential for preventing vascular inflammation.