Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
284 result(s) for "Lab Protocol"
Sort by:
Estimating microbial population data from optical density
The spectrophotometer has been used for decades to measure the density of bacterial populations as the turbidity expressed as optical density–OD. However, the OD alone is an unreliable metric and is only proportionately accurate to cell titers to about an OD of 0.1. The relationship between OD and cell titer depends on the configuration of the spectrophotometer, the length of the light path through the culture, the size of the bacterial cells, and the cell culture density. We demonstrate the importance of plate reader calibration to identify the exact relationship between OD and cells/mL. We use four bacterial genera and two sizes of micro-titer plates (96-well and 384-well) to show that the cell/ml per unit OD depends heavily on the bacterial cell size and plate size. We applied our calibration curve to real growth curve data and conclude the cells/mL–rather than OD–is a metric that can be used to directly compare results across experiments, labs, instruments, and species.
Colorimetric determination of urea using diacetyl monoxime with strong acids
Urea is a byproduct of the urea cycle in metabolism and is excreted through urine and sweat. Ammonia, which is toxic at low levels, is converted to the safe storage form of urea, which represents the largest efflux of nitrogen from many organisms. Urea is an important nitrogen source in agriculture, is added to many industrial products, and is a large component in wastewater. The enzyme urease hydrolyzes urea to ammonia and bicarbonate. This reaction is microbially mediated in soils, hydroponic solutions, and wastewater recycling and is catalyzed in vivo in plants using native urease, making measurement of urea environmentally important. Both direct and indirect methods to measure urea exist. This protocol uses diacetyl monoxime to directly determine the concentration of urea in solution. The protocol provides repeatable results and stable reagents with good color stability and simple measurement techniques for use in any lab with a spectrophotometer. The reaction between diacetyl monoxime and urea in the presence of sulfuric acid, phosphoric acid, thiosemicarbazide, and ferric chloride produces a chromophore with a peak absorbance at 520 nm and a linear relationship between concentration and absorbance from 0.4 to 5.0 mM urea in this protocol. The lack of detectable interferences makes this protocol suitable for the determination of millimolar levels of urea in wastewater streams and hydroponic solutions.
High-molecular weight DNA extraction, clean-up and size selection for long-read sequencing
Rapid advancements in long-read sequencing technologies have transformed read lengths from bps to Mbps, which has enabled chromosome-scale genome assemblies. However, read lengths are now becoming limited by the extraction of pure high-molecular weight DNA suitable for long-read sequencing, which is particularly challenging in plants and fungi. To overcome this, we present a protocol collection; high-molecular weight DNA extraction, clean-up and size selection for long-read sequencing. We optimised a gentle magnetic bead based high-molecular weight DNA extraction, which is presented here in detail. The protocol circumvents spin columns and high-centrifugation, to limit DNA fragmentation. The protocol is scalable based on tissue input, which can be used on many species of plants, fungi, reptiles and bacteria. It is also cost effective compared to kit-based protocols and hence applicable at scale in low resource settings. An optional sorbitol wash is listed and is highly recommended for plant and fungal tissues. To further remove any remaining contaminants such as phenols and polysaccharides, optional DNA clean-up and size selection strategies are given. This protocol collection is suitable for all common long-read sequencing platforms, such as technologies offered by PacBio and Oxford Nanopore. Using these protocols, sequencing on the Oxford Nanopore MinION can achieve read length N50 values of 30–50 kb, with reads exceeding 200 kb and outputs ranging from 15–30 Gbp. This has been routinely achieved with various plant, fungi, animal and bacteria samples.
Making MALDI-TOF MS for entomological parameters accessible: A practical guide for in-house library creation
Matrix-assisted laser desorption-ionisation time of flight mass spectrometry (MALDI-TOF MS) is a powerful analytical method that has been used extensively to identify sample ions of complex mixtures, and biological samples such as proteins, tissues and microorganisms. MALDI-TOF MS has revolutionised clinical microbiology with accurate, rapid, and inexpensive species-level identification of microbes. MALDI-TOF MS technology generates spectral signatures and matches them to a library of similar organisms using bioinformatics pattern matching. The use of MALDI-TOF MS for entomological samples has been explored by multiple groups with proven efficacy at differentiating between closely related species, as well as detecting pathogens in different vectors. The low cost per sample processing, rapid turnaround and robustness are attractive for surveillance of vector control programs. Libraries are built in-house for institutional usage, although a multi-user platform with sharing of spectra and data would be attractive. Only a few studies have strived to make their libraries publicly available. Here, we outline a stepwise approach for creating an in-house MALDI-TOF MS library and subsequent query, using malaria vector species identification as a case study for entomological samples. A protocol and video of the methodology are also shared. Moreover, the libraries related to this publication have been deposited in public repository ( https://doi.org/10.7910/DVN/VYQFNO37 ) for anyone with MALDI-TOF MS equipment to adapt.
A standardized method for plasma extracellular vesicle isolation and size distribution analysis
The following protocol describes our workflow for isolation and quantification of plasma extracellular vesicles (EVs). It requires limited sample volume so that the scientific value of specimens is maximized. These steps include isolation of vesicles by automated size exclusion chromatography and quantification by tunable resistive pulse sensing. This workflow optimizes reproducibility by minimizing variations in processing, handling, and storage of EVs. EVs have significant diagnostic and therapeutic potential, but clinical application is limited by disparate methods of data collection. This standardized protocol is scalable and ensures efficient recovery of physiologically intact EVs that may be used in a variety of downstream biochemical and functional analyses. Simultaneous measurement quantifies EV concentration and size distribution absolutely. Absolute quantification corrects for variations in EV number and size, offering a novel method of standardization in downstream applications.
Alkaline-SDS cell lysis of microbes with acetone protein precipitation for proteomic sample preparation in 96-well plate format
Plate-based proteomic sample preparation offers a solution to the large sample throughput demands in the biotechnology field where hundreds or thousands of engineered microbes are constructed for testing is routine. Meanwhile, sample preparation methods that work efficiently on broader microbial groups are desirable for new applications of proteomics in other fields, such as microbial communities. Here, we detail a step-by-step protocol that consists of cell lysis in an alkaline chemical buffer (NaOH/SDS) followed by protein precipitation with high-ionic strength acetone in 96-well format. The protocol works for a broad range of microbes ( e . g ., Gram-negative bacteria, Gram-positive bacteria, non-filamentous fungi) and the resulting proteins are ready for tryptic digestion for bottom-up quantitative proteomic analysis without the need for desalting column cleanup. The yield of protein using this protocol increases linearly with respect to the amount of starting biomass from 0.5–2.0 OD*mL of cells. By using a bench-top automated liquid dispenser, a cost-effective and environmentally-friendly option to eliminating pipette tips and reducing reagent waste, the protocol takes approximately 30 minutes to extract protein from 96 samples. Tests on mock mixtures showed expected results that the biomass composition structure is in close agreement with the experimental design. Lastly, we applied the protocol for the composition analysis of a synthetic community of environmental isolates grown on two different media. This protocol has been developed to facilitate rapid, low-variance sample preparation of hundreds of samples and allow flexibility for future protocol development.
XTT assay for detection of bacterial metabolic activity in water-based polyester polyurethane
Cellular metabolic activity can be detected by tetrazolium-based colorimetric assays, which rely on dehydrogenase enzymes from living cells to reduce tetrazolium compounds into colored formazan products. Although these methods have been used in different fields of microbiology, their application to the detection of bacteria with plastic-degrading activity has not been well documented. Here, we report a microplate-adapted method for the detection of bacteria metabolically active on the commercial polyester polyurethane (PU) Impranil ® DLN using the tetrazolium salt 2,3-bis [2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide (XTT). Bacterial cells that are active on PU reduce XTT to a water-soluble orange dye, which can be quantitatively measured using a microplate reader. We used the Pseudomonas putida KT2440 strain as a study model. Its metabolic activity on Impranil detected by our novel method was further verified by Fourier-transform infrared spectroscopy (FTIR) analyses. Measurements of the absorbance of reduced XTT at 470 nm in microplate wells were not affected by the colloidal properties of Impranil or cell density. In summary, we provide here an easy and high-throughput method for screening bacteria active on PU that can be adapted to other plastic substrates.
Generation of full-length circular RNA libraries for Oxford Nanopore long-read sequencing
Circular RNA (circRNA) is a noncoding RNA class with important implications for gene expression regulation, mostly by interaction with other RNA species or RNA-binding proteins. While the commonly applied short-read Illumina RNA-sequencing techniques can be used to detect circRNAs, their full sequence is not revealed. However, the complete sequence information is needed to analyze potential interactions and thus the mechanism of action of circRNAs. Here, we present an improved protocol to enrich and sequence full-length circRNAs by using the Oxford Nanopore long-read sequencing platform. The protocol involves an enrichment of lowly abundant circRNAs by exonuclease treatment and negative selection of linear RNAs. Then, a cDNA library is created and amplified by PCR. This protocol provides enough material for several sequencing runs. The library is used as input for ligation-based sequencing together with native barcoding. Stringent quality control of the libraries is ensured by a combination of Qubit, Fragment Analyzer and qRT-PCR. Multiplexing of up to 4 libraries yields in total more than 1–2 Million reads per library, of which 1–2% are circRNA-specific reads with >99% of them full-length. The protocol works well with human cancer cell lines. We further provide suggestions for the bioinformatic analysis of the created data, as well as the limitations of our approach together with recommendations for troubleshooting and interpretation. Taken together, this protocol enables reliable full-length analysis of circRNAs, a noncoding RNA type involved in a growing number of physiologic and pathologic conditions. Metadata Associated content . https://dx.doi.org/10.17504/protocols.io.rm7vzy8r4lx1/v2 .
Methylation levels assessment with Methylation-Sensitive High-Resolution Melting (MS-HRM)
Testing for disease-related DNA methylation changes provides clinically relevant information in personalized patient care. Methylation-Sensitive High-Resolution Melting (MS-HRM) is a method used for measuring methylation changes and has already been used in diagnostic settings. This method utilizes one set of primers that initiate the amplification of both methylated and non-methylated templates. Therefore, the quantification of the methylation levels using MS-HRM is hampered by the PCR bias phenomenon. Some approaches have been proposed to calculate the methylation level of samples using the high-resolution melting (HRM) curves. However, limitations of the methylation calculation using MS-HRM have not been evaluated systematically and comprehensively. We used the Area Under the Curve (AUC), a derivative of the HRM curves, and least square approximation (LSA) to establish a procedure that allowed us to infer methylation levels in an MS-HRM experiment and assess the limitations of that procedure for the assays’ specific methylation level measurement. The developed procedure allowed, with certain limitations, estimation of the methylation levels using HRM curves.
A versatile nuclei extraction protocol for single nucleus sequencing in non-model species–Optimization in various Atlantic salmon tissues
The use of single cell sequencing technologies has exploded over recent years, and is now commonly used in many non-model species. Sequencing nuclei instead of whole cells has become increasingly popular, as it does not require the processing of samples immediately after collection. Here we present a highly effective nucleus isolation protocol that outperforms previously available method in challenging samples in a non-model specie. This protocol can be successfully applied to extract nuclei from a variety of tissues and species.