Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
323
result(s) for
"Lactobacillales - genetics"
Sort by:
Fermented Soybean Meal Increases Lactic Acid Bacteria in Gut Microbiota of Atlantic Salmon (Salmo salar)
by
Catalán, Natalia
,
Wacyk, Jurij
,
Villasante, Alejandro
in
Acinetobacter
,
Altererythrobacter
,
Animal Feed - analysis
2018
The main goal of the present study was to address the effect of feeding fermented soybean meal-based diet to Atlantic salmon on gut microbiota. Further, expression of genes of interest, including cathelicidin antimicrobial peptide (
cath
), mucin 2 (
muc2
), aquaporin (
aqp8ab
), and proliferating cell nuclear antigen (
pcna
), in proximal intestine of fish fed either experimental diet was analyzed. Three experimental diets, including a control fishmeal (30% FM), soybean meal (30% SBM), or fermented soybean meal diet (30% FSBM) were randomly assigned to triplicate tanks during a 50-day trial. The PCR-TTGE showed microbiota composition was influenced by experimental diets. Bands corresponding to genus
Lactobacillus
and
Pediococcus
were characteristic in fish fed the FSBM-based diet. On the other hand, bands corresponding to
Isoptericola
,
Cellulomonas
, and
Clostridium
sensu stricto were only observed in fish FM-based diet, while
Acinetobacter
and
Altererythrobacter
were detected in fish fed SBM-based diet. The expression of
muc2
and
aqp8ab
were significantly greater in fish fed the FSBM-based diet compared with the control group. Our results suggest feeding FSBM to Atlantic salmon may (1) boost health and growth physiology in fish by promoting intestinal lactic acid bacteria growth, having a prebiotic-like effect, (2) promote proximal intestine health by increasing mucin production, and (3) boost intestinal trans-cellular uptake of water. Further research to better understands the effects of bioactive compounds derived from the fermentation process of plant feedstuff on gut microbiota and the effects on health and growth in fish is required.
Journal Article
Fermentative profile and lactic acid bacterial dynamics in non-wilted and wilted alfalfa silage in tropical conditions
by
Odilon Gomes Pereira
,
Paula da Silva, Vanessa
,
Mariele Cristina Nascimento Agarussi
in
Acetic acid
,
Ammonia
,
Cattle
2019
This study was conducted to evaluate the fermentative profile and microbial populations of wilted and non-wilted alfalfa silages ensiled with or without inoculant and the population dynamics of lactic acid bacteria (LAB) of wilted alfalfa plant and theirs silage. A 2 × 2 × 6 factorial arrangement was used, with the absence or presence of wilting (W), with and without bacterial inoculant (I) and six fermentation periods (P) (1, 3, 7, 14, 28 and 56 days), in a completely randomized design, with three replicates. The alfalfa was slightly wilted for 6 h and increased the dry matter content from 133.9 to 233.4 g/kg. It was performed the cultivation, followed by the isolation of LAB from samples of alfalfa forage before ensiling and its silage only in non-inoculated silages, after different fermentation periods. DNA was extracted from the isolated strains of LAB; the 16S rRNA gene sequences were amplified by PCR and the sequences were compared to those available from the GenBank database. Wilting provided silages with lower pH, ammonia nitrogen and acetic acid concentrations. The wilting process did not alter the amount of LAB; however, it affected the LAB diversity of the silages. The Lactobacillus plantarum was the predominant species in non-wilted and wilted silages.
Journal Article
Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome
2020
Lactic acid bacteria (LAB) are fundamental in the production of fermented foods and several strains are regarded as probiotics. Large quantities of live LAB are consumed within fermented foods, but it is not yet known to what extent the LAB we ingest become members of the gut microbiome. By analysis of 9445 metagenomes from human samples, we demonstrate that the prevalence and abundance of LAB species in stool samples is generally low and linked to age, lifestyle, and geography, with
Streptococcus thermophilus
and
Lactococcus lactis
being most prevalent. Moreover, we identify genome-based differences between food and gut microbes by considering 666 metagenome-assembled genomes (MAGs) newly reconstructed from fermented food microbiomes along with 154,723 human MAGs and 193,078 reference genomes. Our large-scale genome-wide analysis demonstrates that closely related LAB strains occur in both food and gut environments and provides unprecedented evidence that fermented foods can be indeed regarded as a possible source of LAB for the gut microbiome.
Here, Pasolli et al. perform a large-scale genome-wide comparative analysis of publicly available and newly sequenced food and human metagenomes to investigate the prevalence and diversity of lactic acid bacteria (LAB), indicating food as a major source of LAB species in the human gut.
Journal Article
Lactic acid bacteria modulate the CncC pathway to enhance resistance to β-cypermethrin in the oriental fruit fly
2024
The gut microbiota of insects has been shown to regulate host detoxification enzymes. However, the potential regulatory mechanisms involved remain unknown. Here, we report that gut bacteria increase insecticide resistance by activating the cap “n” collar isoform-C (CncC) pathway through enzymatically generated reactive oxygen species (ROS) in Bactrocera dorsalis. We demonstrated that Enterococcus casseliflavus and Lactococcus lactis, two lactic acid-producing bacteria, increase the resistance of B. dorsalis to β-cypermethrin by regulating cytochrome P450 (P450) enzymes and α-glutathione S-transferase (GST) activities. These gut symbionts also induced the expression of CncC and muscle aponeurosis fibromatosis. BdCncC knockdown led to a decrease in resistance caused by gut bacteria. Ingestion of the ROS scavenger vitamin C in resistant strain affected the expression of BdCncC/BdKeap1/BdMafK, resulting in reduced P450 and GST activity. Furthermore, feeding with E. casseliflavus or L. lactis showed that BdNOX5 increased ROS production, and BdNOX5 knockdown affected the expression of the BdCncC/BdMafK pathway and detoxification genes. Moreover, lactic acid feeding activated the ROS-associated regulation of P450 and GST activity. Collectively, our findings indicate that symbiotic gut bacteria modulate intestinal detoxification pathways by affecting physiological biochemistry, thus providing new insights into the involvement of insect gut microbes in the development of insecticide resistance.
Graphical Abstract
Graphical Abstract
Journal Article
Polysaccharide production by lactic acid bacteria: from genes to industrial applications
by
Zeidan, Ahmad A.
,
Janzen, Thomas
,
Buldo, Patrizia
in
Bacteria
,
Bacterial Capsules - metabolism
,
Biosynthetic Pathways - genetics
2017
Abstract
The ability to produce polysaccharides with diverse biological functions is widespread in bacteria. In lactic acid bacteria (LAB), production of polysaccharides has long been associated with the technological, functional and health-promoting benefits of these microorganisms. In particular, the capsular polysaccharides and exopolysaccharides have been implicated in modulation of the rheological properties of fermented products. For this reason, screening and selection of exocellular polysaccharide-producing LAB has been extensively carried out by academia and industry. To further exploit the ability of LAB to produce polysaccharides, an in-depth understanding of their biochemistry, genetics, biosynthetic pathways, regulation and structure–function relationships is mandatory. Here, we provide a critical overview of the latest advances in the field of glycosciences in LAB. Surprisingly, the understanding of the molecular processes involved in polysaccharide synthesis is lagging behind, and has not accompanied the increasing commercial value and application potential of these polymers. Seizing the natural diversity of polysaccharides for exciting new applications will require a concerted effort encompassing in-depth physiological characterization of LAB at the systems level. Combining high-throughput experimentation with computational approaches, biochemical and structural characterization of the polysaccharides and understanding of the structure–function–application relationships is essential to achieve this ambitious goal.
This review describes the recent findings regarding exocellular polysaccharide production in lactic acid bacteria, and provides an overview of their applications in food and future trends in polysaccharide research.
Journal Article
Beneficial properties of lactic acid bacteria naturally present in dairy production
by
Nero, Luís Augusto
,
Todorov, Svetoslav D
,
Castilho, Nathália P. A
in
Animals
,
Applied microbiology
,
Beneficial potential - lactic acid bacteria
2018
Consumers are increasingly demanding for natural and beneficial foods, in order to improve their health and well-being. Probiotics play an important role in such demand, and dairy foods are commonly used as vehicles for such bacteria, represented predominantly by lactic acid bacteria. Due to consumers demand, food industry is constantly looking for novel bacterial strains, leading to studies that aims the isolation and characterization of their beneficial features. This study aimed to characterize the naturally occurring lactic acid bacteria obtained from a dairy environment, in order to assess their potential use as probiotics.Preliminary screening and PCR analysis, based on 16S rRNA sequencing, were applied to select and identify 15 LAB strains from the genera Lactobacillus (n = 11), Pediococcus (n = 2) and Weissella (n = 2). All strains showed resistance to low pH and the evaluated bile salt concentrations in vitro. The API ZYM test characterized the enzymatic activity of the strains, and a high β-galactosidase activity was observed in 13 strains. All strains presented resistance to simulated gastric (3 h) and intestinal (4 h) conditions in vitro, the ability to auto- and co-aggregate with indicator microorganisms and a high cell surface hydrophobicity. Most of the strains were positive for map and EFTu beneficial genes. All strains exhibited strong deconjugation of bile salts in vitro and all assimilated lactose.The phenotypes exhibited in vitro and the presence of beneficial genes revealed the beneficial potential of the studied strains, demanding further analyses in a food matrix and in vivo to allow the development of a functional product, with health-related properties.
Journal Article
Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets
by
Agarwal, Neeta
,
Verma, Ashok Kumar
,
Singh, Bhoj Raj
in
Acids
,
Animal Nutritional Physiological Phenomena
,
Animals
2018
The present study was aimed to develop an effective probiotic lactic acid bacteria (LAB) from piglet feces and in vitro characterization of probiotic properties. To confirm host-species specificity of probiotics, the efficacy of isolated LAB on growth, nutrient utilization, health and antioxidant status was observed in early weaned piglets. A total of 30 LAB were isolated from feces of five healthy piglets (28d old). All isolates were Gram positive, cocco-bacilli and catalase negative. Out of thirty LAB isolates, twenty were shortlisted on the basis of their tolerance to pH (3.0, 4.0, 7.0 and 8.0) and bile salts (0.075, 0.15, 0.3 and 1.0%). Whereas, fourteen isolates were selected for further in vitro probiotic characterization due higher (P<0.05) cell surface hydrophobicity to toluene (>45 percent). These isolates fermented twenty-seven different carbohydrates but were negative for ONPG, citrate and malonate. Also enabled to synthesize amylase, protease, lipase and phytase. They were sensitive to penicillin, azithromycin, lincomycin, clindamycin, erythromycin, cephalothin and chloramphenicol and resistant to ciprofloxacin, ofloxacin, gatifloxacin, vancomycin and co-trimoxazole. Except three isolates, all showed antagonistic activity (>60% co-culture activity) against Escherichia coli, Salmonella Enteritidis, Salmonella serotype (ser.) Typhimurium, Staphylococcus intermedius, Staph. chromogenes, Proteus mirabillis, Areomonas veonii, Bordetella bronchioseptica and Klebsialla oxytoca. The isolate Lacp28 exhibited highest tolerance to acidic pH and bile salts (up to 0.3%), phytase activity, cell surface hydrophobicity, antagonistic activity and co-culture assay (>80% growth inhibition). Host specificity of Lacp28 was further confirmed by heavy in vitro adhesion to pig intestinal epithelium cells compared to chicken. Hence, Lacp28 was selected and identified by phylogenetic analysis of 16S rRNA as Pediococcus acidilactici strain FT28 with 100% similarity (GenBank accession nos. KU837245, KU837246 and KU837247). The Pediococcus acidilactici FT28 was selected as potential probiotic candidature for in vivo efficacy in weaned pigs. Thirty-six crossbred piglets (28d) were randomly distributed into three groups (four replicates of three each) namely, basal diet without probiotics (T0) or with Lactobacillus acidophilus NCDC15 (conventional dairy-specific probiotic; T1) or Pediococcus acidilactici FT28 (swine-specific probiotic; T2). At end of the experiment, six piglets of similar body weight were selected to conduct digestion trial for estimation of nutrient digestibility. Results of the study indicated that supplementation of both probiotics improved (P<0.001) FCR compared to control without significant effect in average daily gain and DM intake. However, the apparent digestibility of crude protein and ether extract was better (P<0.01) in pigs fed P. acidilactici FT28 compared control and L. acidophilus fed groups. The total WBC and RBC count, serum glucose, total protein, albumin and globulin concentration was higher (P<0.05) in P. acidilactici FT28 fed group with better (P<0.05) catalase and superoxide dismutase activity measured in erythrocyte. It is concluded that species-specific Pediococcus acidilactici FT28 isolated with potential in vitro probiotic properties and also hold probiotic candidature by showing the potential capabilities with higher nutrient digestibility, heamato-biochemical and antioxidant status compared to control and Lactobacillus acidophilus NCDC15.
Journal Article
Fermentation of plant‐based dairy alternatives by lactic acid bacteria
by
Moggré, Gert‐Jan
,
Harper, Aimee R.
,
Dobson, Renwick C.J.
in
Acidification
,
Allergens
,
Amino acids
2022
Summary Ethical, environmental and health concerns around dairy products are driving a fast‐growing industry for plant‐based dairy alternatives, but undesirable flavours and textures in available products are limiting their uptake into the mainstream. The molecular processes initiated during fermentation by lactic acid bacteria in dairy products is well understood, such as proteolysis of caseins into peptides and amino acids, and the utilisation of carbohydrates to form lactic acid and exopolysaccharides. These processes are fundamental to developing the flavour and texture of fermented dairy products like cheese and yoghurt, yet how these processes work in plant‐based alternatives is poorly understood. With this knowledge, bespoke fermentative processes could be engineered for specific food qualities in plant‐based foods. This review will provide an overview of recent research that reveals how fermentation occurs in plant‐based milk, with a focus on how differences in plant proteins and carbohydrate structure affect how they undergo the fermentation process. The practical aspects of how this knowledge has been used to develop plant‐based cheeses and yoghurts is also discussed. The mechanisms of fermentation by lactic acid bacteria are reviewed in relation to plant‐based dairy alternatives. Particular attention is paid to proteolytic and carbohydrate metabolism systems, and how these have been studied in plant‐based dairy alternative products is discussed.
Journal Article
Functional and molecular characterization of millet associated probiotic bacteria
by
Karthikeyan, Subburamu
,
Ramalakshmi, Alaguthevar
,
Balakrishnan, Murugesan
in
Amoxicillin
,
Anti-Bacterial Agents - pharmacology
,
Antibacterial activity
2024
The lactic acid bacteria are one of the sustainable ways of food production. As the native lactic acid bacteria (LAB) easily manipulate the substrate, helps in production of health essential probiotics with enhancing the bioavailability of the substrate. Here also, in present study, the native LAB isolates isolated from the millets and characterize them for the functional analysis for the human health association. In the present study, fermented millet-associated lactic acid bacteria were screened and characterized for their probiotic potential, safety evaluation and antimicrobial activity. A total of 33 isolates were purified as lactic acid bacteria based on colony shape and biochemical assays. However, only 13 isolates were found to be catalase-negative. Among the 13 isolates, 5 isolates exhibited optimum growth at 6.5% and 9.5% of salt concentrations, pH of 4.5 to 8.5 and 17 °C to 40 °C of the temperature. The probiotic properties of the five isolates exhibited that the survival rates in acid and bile salt concentration ranged from 56.2 to 73.7% and 55.3 to 70.3%, respectively. Similarly, the surface hydrophobicity of the isolates was 41–75%. Antibiotic assay revealed that all five isolates were resistant to Amoxicillin, Cloxacillin, and Penicillin-V. Interestingly, all the isolates except ME26 displayed susceptibility towards Penicillin (2 units) and Tetracycline (10 µg). Further, the four isolates (ME25, ME26, ME9, and ME2) had more antifungal activity against
Aspergillus flavus
. However, only three, except ME1 and ME2, showed maximum antibacterial activity and produced more antimicrobial compounds compared to reference strain
L. plantarum
Pb3. The potential probiotic isolates were identified as
Weisella cibaria
ME9,
Weisella cibaria
ME26, and
Weisella confusa
ME25.
Journal Article
Characterization and anti-salmonella activities of lactic acid bacteria isolated from cattle faeces
by
Ayeni, Funmilola A.
,
Adetoye, Adewale
,
Adeniyi, Bolanle A.
in
Acclimatization
,
Animal Feed
,
Animal growth
2018
Background
Non typhoidal salmonellosis is one of the neglected zoonoses in most African countries. The use of sub-therapeutic doses of antibiotics as animal growth promoter enhances the emergence and dissemination of antimicrobial resistance in bacteria with food animal reservoirs and may also results in antibiotics residue in animal products. One promising alternative to antibiotics in animal feed is Lactic Acid Bacteria (LAB) as probiotics. This study was carried out to determine the anti-salmonella activities and suitability of LAB isolated from cattle faeces in Nigeria as potential probiotics in cattle feed.
Method
The test
Salmonella enterica
spp strains and LAB were isolated from cattle faeces and identified by MALDI-TOF MS and partial sequencing of 16S rRNA genes respectively. The anti-salmonella activities of the isolated LAB in co-culture, cell-free supernatant, inhibition of growth by viable LAB cells and quantification of organic acids were determined by standard techniques. The ability of the LAB strains to withstand gastric conditions, antibiotic susceptibility and their haemolytic ability on blood agar were also determined.
Results
A total of 88 LAB belonging to 15 species were isolated and identified from cattle faeces. The most abundant species were
Streptococcus infantarius
(26),
Enterococcus hirae
(12),
Lactobacillus amylovorus
(10),
Lactobacillus mucosae
(10) and
Lactobacillus ingluviei
(9). Most of the LAB strains showed good anti-salmonella activities against the test
Salmonella enterica
spp. with 2
Lactobacillus
strains;
Lactobacillus amylovorus
C94 and
Lactobacillus salivarius
C86 exhibiting remarkable anti-salmonella activities with total inhibition of
Salmonella
spp after 18 hours of co-incubation. The selected strains were able to survive simultaneous growth at pH 3 and 7% bile concentration and are non hemolytic.
Conclusion
This study reports the vast diversity of culturable LAB in cattle faeces from Nigeria and their putative
in-vitro
antibacterial activity against
Salmonella enterica
spp isolated from cattle.
Lactobacillus amylovorus
C94 and
Lactobacillus salivarius
C86 demonstrated promising probiotic potentials
in-vitro
and will be further tested
in-vivo
in animal field trial.
Journal Article