Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
52 result(s) for "Lagopus muta"
Sort by:
Climate Change and Human Disturbance Can Lead to Local Extinction of Alpine Rock Ptarmigan: New Insight from the Western Italian Alps
Alpine grouses are particularly vulnerable to climate change due to their adaptation to extreme conditions and to their relict distributions in the Alps where global warming has been particularly marked in the last half century. Grouses are also currently threatened by habitat modification and human disturbance, and an assessment of the impact of multiple stressors is needed to predict the fate of Alpine populations of these birds in the next decades. We estimated the effect of climate change and human disturbance on a rock ptarmigan population living in the western Italian Alps by combining an empirical population modelling approach and stochastic simulations of the population dynamics under the a1B climate scenario and two different disturbance scenarios, represented by the development of a ski resort, through 2050.The early appearance of snow-free ground in the previous spring had a favorable effect on the rock ptarmigan population, probably through a higher reproductive success. On the contrary, delayed snowfall in autumn had a negative effect possibly due to a mismatch in time to molt to white winter plumage which increases predation risk. The regional climate model PROTHEUS does not foresee any significant change in snowmelt date in the study area, while the start date of continuous snow cover is expected to be significantly delayed. The net effect in the stochastic projections is a more or less pronounced (depending on the model used) decline in the studied population. The addition of extra-mortality due to collision with ski-lift wires led the population to fatal consequences in most projections. Should these results be confirmed by larger studies the conservation of Alpine populations would deserve more attention. To counterbalance the effects of climate change, the reduction of all causes of death should be pursued, through a strict preservation of the habitats in the present area of occurrence.
Modeling future wildlife habitat suitability: serious climate change impacts on the potential distribution of the Rock Ptarmigan Lagopus muta japonica in Japan’s northern Alps
Background The Rock Ptarmigan Lagopus muta japonica lives in the alpine zones of central Japan, which is the southern limit of the global distribution for this species. This species is highly dependent on alpine habitats, which are considered vulnerable to rapid climate change. This study aimed to assess the impact of climate change on potential L. muta japonica habitat based on predicted changes to alpine vegetation, to identify population vulnerability under future climatic conditions for conservation planning. We developed species distribution models, which considered the structure of the alpine ecosystem by incorporating spatial hierarchy on specific environmental factors to assess the potential habitats for L. muta japonica under current and future climates. We used 24 general circulation models (GCMs) for 2081–2100 as future climate conditions. Results The predicted potential habitat for L. muta japonica was similar to the actual distribution of the territories in the study area of Japan’s northern Alps (36.25–36.5°N, 137.5–137.7°E). Future potential habitat for L. muta japonica was projected to decrease to 0.4% of the current potential habitat in the median of occurrence probabilities under 24 GCMs, due to a decrease in alpine vegetation communities. Some potential habitats in the central and northwestern part of the study area were predicted to be sustained in the future, depending on the GCMs. Conclusions Our model results predicted that the potential habitats for L. muta japonica in Japan’s northern Alps, which provides core habitat for this subspecies, would be vulnerable by 2081–2100. Small sustainable habitats may serve as refugia, facilitating the survival of L. muta japonica populations under future climatic conditions. Impact assessment studies of the effect of climate change on L. muta japonica habitats at a nationwide scale are urgently required to establish effective conservation planning for this species, which includes identifying candidate areas for assisted migration as an adaptive strategy.
Distance sampling vs. plot sampling for monitoring population abundances of the Pyrenean rock ptarmigan
The rock ptarmigan (Lagopus muta) has a wide Holarctic geographical range, within which its status changes locally from threatened to abundant. For the correct management of populations under differing scenarios, accurate and precise estimates of bird abundances and/or densities are required. We used geolocated datasets from 56 counts of singing males carried out in 2003–2017 to estimate the density of Pyrenean rock ptarmigans (Lagopus muta pyrenaica). We analysed these datasets using two methodologies: (1) a plot sampling (PS) approach with two effective detection ranges (EDR) of 250 m and 350 m and (2) a conventional distance sampling (DS) approach. Our results showed that the density estimates obtained by DS were more precise and 30–87% higher than those obtained by PS using 250 m and 350 m EDR. Monitoring with PS underestimates populations and is less precise than DS; this bias is magnified when high EDR values are used. The monitoring of the Pyrenean rock ptarmigan could be significantly improved with greater use of the DS method.
Chick and juvenile survival of Japanese rock ptarmigan Lagopus muta japonica
We estimated clutch size, hatching success, chick survival before independence from hens and juvenile survival after independence in Japanese rock ptarmigan Lagopus muta japonica during 2006-2012 on Mt. Norikura, Honshu, Japan. The tame behaviour of this subspecies provided us a unique opportunity to observe them at a close range throughout the period from hatching to adulthood. The average clutch size was 5.7 ± 0.1 (± SE). We estimated the average hatching success to be 0.602 ± 0.880, the average nest hatching success to be 0.733 ± 1.071, the average hatchability of successful nests to be 0.907 ± 0.017 and average female survival during June, as an indicator of their survival during laying and the incubation periods, to be 0.905 ± 0.055. We attributed all egg losses to predation by carnivores. Clutch size, nest success, hatchability and female survival during June did not vary among years. Chick survival decreased sharply during the first four weeks of the brooding season. The average annual chick survival until independence was 0.278 ± 0.097, but it varied from 0.096 ± 0.051 to 0.639 ± 0.084. Survival of juveniles after independence was higher than for chicks before independence. Average over-winter survival of juveniles was larger and was 0.902 ± 0.015. We estimated the average reproductive success of Japanese rock ptarmigan from egg-laying to one year old to be 0.586 ± 0.883 birds/breeding female. Weather conditions, especially rainfall, during the first two weeks of the brooding season appeared to negatively affect chick survival.
Circumpolar status of Arctic ptarmigan
Rock ptarmigan (Lagopus muta) and willow ptarmigan (L. lagopus) are Arctic birds with a circumpolar distribution but there is limited knowledge about their status and trends across their circumpolar distribution. Here, we compiled information from 90 ptarmigan study sites from 7 Arctic countries, where almost half of the sites are still monitored. Rock ptarmigan showed an overall negative trend on Iceland and Greenland, while Svalbard and Newfoundland had positive trends, and no significant trends in Alaska. For willow ptarmigan, there was a negative trend in mid-Sweden and eastern Russia, while northern Fennoscandia, North America and Newfoundland had no significant trends. Both species displayed some periods with population cycles (short 3–6 years and long 9–12 years), but cyclicity changed through time for both species. We propose that simple, cost-efficient systematic surveys that capture the main feature of ptarmigan population dynamics can form the basis for citizen science efforts in order to fill knowledge gaps for the many regions that lack systematic ptarmigan monitoring programs.
WILL REPROGRAMMED ELEPHANT CELLS EVER MAKE A MAMMOTH?
The breakthrough - announced on 6 March by the de-extinction company Colossal Biosciences in Dallas, Texas - is an early technical success in Colossal's high-profile effort to engineer elephants with woolly mammoth traits. Endangered species In 2011, Jeanne Loring, a stem-cell biologist at the Scripps Research Institute in La Jolla, California, and her colleagues created iPS cells from a northern white rhinoceros (Ceratotherium simum cottoni) and a monkey called a drill (Mandrillus leucophaeus), the first such cells from endangered animals2. Embryonic-like stem cells have since been made from a menagerie of threatened species, including snow leopards (Panthera uncia)3, Sumatran orangutans (Pongo abelii)4 and Japanese ptarmigans (Lagopus muta japónica)5.
Rapid shifts in Arctic tundra species' distributions and inter-specific range overlap under future climate change
Aim The Arctic is one of the planet's most rapidly warming regions, with trends expected to intensify in the future. Projections of shifts in species distributional ranges under future climate change are thus far lacking for most vertebrate species using the Arctic tundra. Our aim was to assess possible climate‐induced changes in distributional ranges and inter‐specific overlap of an Arctic species assemblage within the world's largest land‐based protected area. Location During 1979–2013 location data of eight Arctic birds and mammals, Arctic fox (Vulpes lagopus), Arctic hare (Lepus arcticus), Arctic wolf (Canis lupus arctos), muskox (Ovibos moschatus), polar bear (Ursus maritimus), rock ptarmigan (Lagopus muta), snow bunting (Plectrophenax nivalis) and snowy owl (Bubo scandiacus) were collected in the Northeast Greenland National Park. Methods The maximum entropy (MaxEnt) algorithm and Schoener's D niche overlap index were used to assess shifts and changes in overlap of species‐specific distributions under recent (1979–2013) and future (2061–2080; representative concentration pathways [RCPs] 2.6, 4.5 and 8.5) bioclimatic conditions. Results Species distributions were projected to shift northward and upwards across all scenarios, and at higher rates than previously reported. Future distributions were also forecasted to become spatially less clustered and to expand in size for all species. Species‐specific shifts in distribution ranges altered inter‐specific overlap, most notably by an increase in overlap under scenario RCP 8.5. Main conclusions The rapid shifts in distribution ranges detected here underline that climate change impacts are most pronounced in areas with higher levels of warming, leading to accelerated shifts in species’ ranges towards the poles. However, the concomitant range expansions we found may suggest that future climatic conditions in north‐east Greenland may not have such a detrimental impact on the distribution of cold‐adapted species as generally expected, at least in the near future.
Canines (Canis lupus familiaris) as biodetectors for conservation work: Can they discriminate the rock ptarmigan (Lagopus muta) from the willow grouse (L. lagopus) in a yes/no task?
Alpine and arctic bird populations have shown an unmistakable decrease over the last three decades, and the need for conservation is highly necessary. We investigated the use of five privately-owned dogs (Canis lupus familiaris) as a non-invasive tool to determine the presence of rock ptarmigan (Lagopus muta), through sniffing out faecal pellets, using a yes/no training regime. We carried out 36 double-blind experimental trials per dog and hypothesised that dogs could discriminate the rock ptarmigan from similar species, such as black grouse (Tetrao tetrix), western capercaillie (T. urogallus) and willow grouse (L. lagopus). Our dogs detected differences between the avian species with an average accuracy of 65.9%, sensitivity of 66.7% and specificity of 65.3%. We showed that privately-owned dogs have the potential to be used as biodetectors for conservational work within controlled laboratory conditions for declining species, but overall, only one dog was considered proficient enough. We concluded that dogs could be used as a non-invasive tool to detect the rock ptarmigan, and with further field training and testing, operate in the field for detection surveys.
Gyrfalcon Prey Abundance and Their Habitat Associations in a Changing Arctic
ABSTRACT Arctic habitats are changing rapidly and altering trophic webs and ecosystem functioning. Understanding how species' abundances and distributions differ among Arctic habitats is important in predicting future species shifts and trophic‐web consequences. We aimed to determine the habitat–abundance relationships for three small herbivores on the Seward Peninsula of Alaska, USA by fitting data from 983 point counts (collected during 2019, 2021, and 2022) with N‐mixture models that account for imperfect detection. These herbivore species, Willow Ptarmigan (Lagopus lagopus), Rock Ptarmigan (L. muta), and Arctic ground squirrels (Urocitellus parryii), are fundamental to tundra food webs, and primary prey for Arctic raptors including Gyrfalcons (Falco rusticolus). Second, we aimed to map herbivore densities within Gyrfalcon breeding territories. Third, we aimed to evaluate whether Gyrfalcons were more likely to occupy territories with higher prey densities using a multi‐season occupancy model coupled with occupancy observations from helicopter surveys conducted during 2016–2022 at 97 Gyrfalcon territories. We found that male Willow Ptarmigan were more abundant in areas with greater cover of tundra, tall shrubs, and tussock tundra. Conversely, male Rock Ptarmigan were more abundant in areas with greater cover of sparse vegetation and tundra. Arctic ground squirrels were more abundant at higher elevations with greater cover of sparse vegetation and low shrubs. Willow Ptarmigan were widespread within Gyrfalcon breeding territories, whereas Rock Ptarmigan and Arctic ground squirrels had patchier distributions with few areas of high abundance. Lastly, Gyrfalcons were more likely to occupy territories with higher densities of Willow Ptarmigan and Arctic ground squirrels. As the Artic continues to warm, Rock Ptarmigan and Arctic ground squirrels may be vulnerable to ongoing shrub encroachment, whereas Willow Ptarmigan may benefit. By tying abundances of three prey to Gyrfalcon occupancy, our results contribute to understanding potential impacts on higher levels of this Arctic trophic web. Arctic habitats are changing rapidly, impacting trophic webs and ecosystem functions. We examined the habitat–abundance relationships of three small herbivores on the Seward Peninsula, Alaska, and their distribution within Gyrfalcon breeding territories. We found that Gyrfalcons preferred territories with higher densities of Willow Ptarmigan and Arctic ground squirrels, and that changes in habitat may benefit some prey species, like Willow Ptarmigan, while making others, such as Rock Ptarmigan and Arctic ground squirrels, more vulnerable to warming and shrub encroachment.
Wood mouse (Apodemus sylvaticus L.) as intermediate host for Mesocestoides canislagopodis (Rudolphi, 1810) (Krabbe 1865) in Iceland
Mesocestoides canislagopodis is a common parasite of the arctic fox ( Vulpes lagopus ) in Iceland. In the past, household dogs ( Canis familiaris ) and cats ( Felis catus ) were also reported in Iceland to be infected. Recently, scolices of a non-maturing Mesocestoides sp . were detected in the intestines of the gyrfalcon ( Falco rusticolus ), and tetrathyridia were isolated in the body cavity of rock ptarmigan ( Lagopus muta ) and subsequently described. All stages were confirmed, using both morphological and molecular methods, to belong to the same species, M. canislagopodis . In the present study, post-mortem examination of wood mice ( Apodemus sylvaticus ), sampled in autumn 2014 on a farm in Northeast Iceland, revealed the presence of tetrathyridia in the peritoneal cavity and in the liver. Most tetrathyridia in the peritoneal cavity were free, but some were encapsulated in a thin connective tissue stroma and loosely attached to the inner organs. They appear as whitish, heart-shaped, flattened, unsegmented bodies with a slightly pointed posterior end. In the liver, tetrathyridia were seen as pale-tanned nodules embedded in the parenchyma. Comparative molecular analysis, both at the generic level (D1 domain LSU ribosomal DNA), and at the specific level (cytochrome c oxidase subunit I ( cox1 ) and 12S mitochondrial DNA), revealed that the tetrathyridia belonged to M. canislagopodis . A. sylvaticus represents a new second intermediate host record in Iceland, and the first description of a rodent as intermediate host for this species, thus participating in the life cycle of the parasite.