Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Lake Sinai virus"
Sort by:
Metatranscriptome Analysis of Sympatric Bee Species Identifies Bee Virus Variants and a New Virus, Andrena-Associated Bee Virus-1
by
Mandelik, Yael
,
Wiedenheft, Blake
,
Carey, Charles C.
in
Andrena
,
Andrena-associated bee virus-1 (AnBV-1)
,
Animals
2021
Bees are important plant pollinators in agricultural and natural ecosystems. High average annual losses of honey bee (Apis mellifera) colonies in some parts of the world, and regional population declines of some mining bee species (Andrena spp.), are attributed to multiple factors including habitat loss, lack of quality forage, insecticide exposure, and pathogens, including viruses. While research has primarily focused on viruses in honey bees, many of these viruses have a broad host range. It is therefore important to apply a community level approach in studying the epidemiology of bee viruses. We utilized high-throughput sequencing to evaluate viral diversity and viral sharing in sympatric, co-foraging bees in the context of habitat type. Variants of four common viruses (i.e., black queen cell virus, deformed wing virus, Lake Sinai virus 2, and Lake Sinai virus NE) were identified in honey bee and mining bee samples, and the high degree of nucleotide identity in the virus consensus sequences obtained from both taxa indicates virus sharing. We discovered a unique bipartite + ssRNA Tombo-like virus, Andrena-associated bee virus-1 (AnBV-1). AnBV-1 infects mining bees, honey bees, and primary honey bee pupal cells maintained in culture. AnBV-1 prevalence and abundance was greater in mining bees than in honey bees. Statistical modeling that examined the roles of ecological factors, including floral diversity and abundance, indicated that AnBV-1 infection prevalence in honey bees was greater in habitats with low floral diversity and abundance, and that interspecific virus transmission is strongly modulated by the floral community in the habitat. These results suggest that land management strategies that aim to enhance floral diversity and abundance may reduce AnBV-1 spread between co-foraging bees.
Journal Article
First detection of Lake Sinai virus in the Czech Republic: a potential member of a new species
by
Prodělalová, Jana
,
Čukanová, Eliška
,
Moutelíková, Romana
in
Apis mellifera
,
Bees
,
DNA-directed RNA polymerase
2022
Lake Sinai virus (LSV) is one of over 20 honey bee viruses. Variants of LSV have been classified as members of two officially recognised species, Lake Sinai virus 1 and Lake Sinai virus 2. However, there are currently a limited number of whole-genome sequences, and the genetic variability of the virus indicates that additional species may need to be established. Extracted nucleic acid of 209 honey bee samples was screened by PCR for 11 honey bee viruses. LSV was the third most abundant virus (36.9% of positive samples), after Apis mellifera filamentous virus (72.2%) and deformed wing virus (52.5%). LSV-positive samples were analyzed further by PCR with primers targeting the region encoding the viral RNA-dependent RNA polymerase. Subsequently, the PCR products were sequenced, and the resulting sequences were used for a first round of phylogenetic analysis. Based on those results, several isolates were selected for whole-genome sequencing, and the complete genome sequences were used for additional phylogenetic analysis. The results indicated the presence of at least three genetically distinct groups of LSV in the Czech Republic, the most prevalent one being related to LSV 2 but too dissimilar to be considered a member of the same species. Two sequences of a major LSV strain cluster native to the Czech Republic were determined, representing the first Czech LSV strains published to date.
Journal Article
Honey Bee Infecting Lake Sinai Viruses
by
Daughenbaugh, Katie
,
Brutscher, Laura
,
Martin, Madison
in
Animals
,
Apis mellifera
,
Beekeeping
2015
Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV) group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV), and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.
Journal Article
The Virome of Healthy Honey Bee Colonies: Ubiquitous Occurrence of Known and New Viruses in Bee Populations
by
Nunvář, Jaroslav
,
Matthijnssens, Jelle
,
Saláková, Martina
in
Animals
,
Apis mellifera
,
Australia
2022
The Western honey bee, Apis mellifera , is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping. Honey bees are globally important pollinators threatened by many different pathogens, including viruses. We investigated the virome of honey bees collected at the end of the beekeeping season (August/September) in Czechia, a Central European country. Samples were examined in biological replicates to assess the homogeneity, stability, and composition of the virome inside a single hive. By choice of healthy workers from colonies, where Varroa destructor was under control, we could identify ubiquitous bee viruses. Deformed wing virus (DWV) was highly prevalent, even though the bees were healthy, without any noticeable disease signs. The overall virome composition (consisting of honey bee-, plant-, and bacterium-infecting viruses) was driven primarily by the hive and its location. However, honey bee-specific viruses showed an uneven distribution within the same hive. In addition, our results point to an unusual cooccurrence between two rhabdoviruses and reveal the presence of five distinct lineages of Lake Sinai viruses (LSVs) clustering with other LSV strains described globally. Comparison of our results with the virome of Australian honey bees, the last truly Varroa- and DWV-free population, showed a strong difference with respect to DWV and a set of diverse members of the Picornavirales , of which the latter were absent in our samples. We hypothesize that the occurrence of DWV introduced by Varroa strongly affects the virome structure despite the mite being under control. IMPORTANCE The Western honey bee, Apis mellifera , is a vital part of our ecosystem as well as cultural heritage. Annual colony losses endanger beekeeping. In this study, we examined healthy bees from the heart of Central Europe, where honey bee colonies have been commonly affected by varroosis over 5 decades. Our virome analysis showed the presence of ubiquitous viruses in colonies where the mite Varroa destructor was under control and no honey bee disease signs were observed. Compared to previous studies, an important part of our study was the analysis of multiple replicates from individual hives. Our overall results indicate that the virome structure (including bee-infecting viruses, plant-infecting viruses, and bacteriophages) is stable within hives; however, the bee-infecting viruses varied largely within interhive replicates, suggesting variation of honey bee viruses within individual bees. Of interest was the striking difference between the viromes of our 39 pools and 9 pools of honey bee viromes previously analyzed in Australia. It could be suggested that Varroa not only affects DWV spread in bee colonies but also affects diverse members of the Picornavirales , which were strongly decreased in Czech bees compared to the Varroa - and DWV-naive Australian bees.
Journal Article
First Complete Genome of Lake Sinai Virus Lineage 3 and Genetic Diversity of Lake Sinai Virus Strains From Honey Bees and Bumble Bees
by
Šimenc, Laura
,
Kuhar, Urška
,
Jamnikar-Ciglenečki, Urška
in
Analysis
,
APICULTURE AND SOCIAL INSECTS
,
Apis mellifera
2020
The complete genome of Lake Sinai virus 3 (LSV3) was sequenced by the Ion Torrent next-generation sequencing (NGS) technology from an archive sample of honey bees collected in 2010. This strain M92/2010 is the first complete genome sequence of LSV lineage 3. From October 2016 to December 2017, 56 honey bee samples from 32 different locations and 41 bumble bee samples from five different locations were collected. These samples were tested using a specific reverse transcriptase-polymerase chain reaction (RT-PCR) method; 75.92% of honey bee samples and 17.07% of bumble bee samples were LSV-positive with the RT-PCR method. Phylogenetic comparison of 557-base pair-long RNA-dependent RNA polymerase (RdRp) genome region of selected 23 positive samples of honey bees and three positive bumble bee samples identified three different LSV lineages: LSV1, LSV2, and LSV3. The LSV3 lineage was confirmed for the first time in Slovenia in 2010, and the same strain was later detected in several locations within the country. The LSV strains detected in bumble bees are from 98.6 to 99.4% identical to LSV strains detected among honey bees in the same territory.
Journal Article
Relative abundance and molecular evolution of Lake Sinai Virus (Sinaivirus) clades
2019
Lake Sinai Viruses (Sinaivirus) are commonly detected in honey bees ( Apis mellifera ) but no disease phenotypes or fitness consequences have yet been demonstrated. This viral group is genetically diverse, lacks obvious geographic structure, and multiple lineages can co-infect individual bees. While phylogenetic analyses have been performed, the molecular evolution of LSV has not been studied extensively. Here, I use LSV isolates from GenBank as well as contigs assembled from honey bee Sequence Read Archive (SRA) accessions to better understand the evolutionary history of these viruses. For each ORF, substitution rate variation, codon usage, and tests of positive selection were evaluated. Outlier regions of high or low diversity were sought with sliding window analysis and the role of recombination in creating LSV diversity was explored. Phylogenetic analysis consistently identified two large clusters of sequences that correspond to the current LSV1 and LSV2 nomenclature, however lineages sister to LSV1 were the most frequently detected in honey bee SRA accessions. Different expression levels among ORFs suggested the occurrence of subgenomic transcripts. ORF1 and RNA-dependent RNA polymerase had higher evolutionary rates than the capsid and ORF4. A hypervariable region of the ORF1 protein-coding sequence was identified that had reduced selective constraint, but a site-based model of positive selection was not significantly more likely than a neutral model for any ORF. The only significant recombination signals detected between LSV1 and LSV2 initiated within this hypervariable region, but assumptions of the test (single-frame coding and independence of substitution rate by site) were violated. LSV codon usage differed strikingly from that of honey bees and other common honey-bee viruses, suggesting LSV is not strongly co-evolved with that host. LSV codon usage was significantly correlated with that of Varroa destructor , however, despite the relatively weak codon bias exhibited by the latter. While codon usage between the LSV1 and LSV2 clusters was similar for three ORFs, ORF4 codon usage was uncorrelated between these clades, implying rapid divergence of codon use for this ORF only. Phylogenetic placement and relative abundance of LSV isolates reconstructed from SRA accessions suggest that detection biases may be over-representing LSV1 and LSV2 in public databases relative to their sister lineages.
Journal Article
An updated genetic marker for detection of Lake Sinai Virus and metagenetic applications
by
Olgun, Tugce
,
Evans, Jay D.
,
Iwanowicz, Deborah D.
in
Abdomen
,
Agricultural Science
,
Agriculture
2020
Lake Sinai Viruses (LSV) are common RNA viruses of honey bees (
) that frequently reach high abundance but are not linked to overt disease. LSVs are genetically heterogeneous and collectively widespread, but despite frequent detection in surveys, the ecological and geographic factors structuring their distribution in
are not understood. Even less is known about their distribution in other species. Better understanding of LSV prevalence and ecology have been hampered by high sequence diversity within the LSV clade.
Here we report a new polymerase chain reaction (PCR) assay that is compatible with currently known lineages with minimal primer degeneracy, producing an expected 365 bp amplicon suitable for end-point PCR and metagenetic sequencing. Using the Illumina MiSeq platform, we performed pilot metagenetic assessments of three sample sets, each representing a distinct variable that might structure LSV diversity (geography, tissue, and species).
The first sample set in our pilot assessment compared cDNA pools from managed
hives in California (
= 8) and Maryland (
= 6) that had previously been evaluated for LSV2, confirming that the primers co-amplify divergent lineages in real-world samples. The second sample set included cDNA pools derived from different tissues (thorax vs. abdomen,
= 24 paired samples), collected from managed
hives in North Dakota. End-point detection of LSV frequently differed between the two tissue types; LSV metagenetic composition was similar in one pair of sequenced samples but divergent in a second pair. Overall, LSV1 and intermediate lineages were common in these samples whereas variants clustering with LSV2 were rare. The third sample set included cDNA from individual pollinator specimens collected from diverse landscapes in the vicinity of Lincoln, Nebraska. We detected LSV in the bee
(four of 63 specimens tested, 6.3%) at a similar rate as
(nine of 115 specimens, 7.8%), but only one
sequencing library yielded sufficient data for compositional analysis. Sequenced samples often contained multiple divergent LSV lineages, including individual specimens. While these studies were exploratory rather than statistically powerful tests of hypotheses, they illustrate the utility of high-throughput sequencing for understanding LSV transmission within and among species.
Journal Article
Special Issue: Honey Bee Viruses
by
Gisder, Sebastian
,
Genersch, Elke
in
Animals
,
Apis mellifera
,
Apis mellifera filamentous virus (AmFV)
2015
Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.
Journal Article