Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
604
result(s) for
"Lamiales"
Sort by:
Evolution of carnivorous traps from planar leaves through simple shifts in gene expression
2020
Leaves vary from planar sheets and needle-like structures to elaborate cup-shaped traps. Here, we show that in the carnivorous plant Utricularia gibba, the upper leaf (adaxial) domain is restricted to a small region of the primordium that gives rise to the trap’s inner layer. This restriction is necessary for trap formation, because ectopic adaxial activity at early stages gives radialized leaves and no traps. We present a model that accounts for the formation of both planar and nonplanar leaves through adaxial-abaxial domains of gene activity establishing a polarity field that orients growth. In combination with an orthogonal proximodistal polarity field, this system can generate diverse leaf forms and account for the multiple evolutionary origins of cup-shaped leaves through simple shifts in gene expression.
Journal Article
Lagging Adaptation to Climate Supersedes Local Adaptation to Herbivory in an Annual Monkeyflower
by
Handloser, Neal T.
,
Patterson, Erin
,
Kooyers, Nicholas J.
in
Adaptation
,
Adaptation, Biological
,
Altitude
2019
While native populations are often adapted to historical biotic and abiotic conditions at their home site, populations from other locations in the range may be better adapted to current conditions due to changing climates or extreme conditions in a single year. We examine whether local populations of a widespread species maintain a relative advantage over distant populations that have evolved at sites better matching the current climate. Specifically, we grew lines derived from low- and high-elevation annual populations in California and Oregon of the common monkeyflower (Erythranthe guttata) and conducted phenotypic selection analyses in low- and high-elevation common gardens in Oregon to examine relative fitness and the traits mediating relative fitness. Californian low-elevation populations have the highest relative fitness at the low-elevation site, and Californian high-elevation populations have the highest relative fitness at the high-elevation site. Relative fitness differences are mediated by selection for properly timed transitions to flowering, with selection favoring more rapid growth rates at the low-elevation site and greater vegetative biomass prior to flowering at the high-elevation site. Fitness advantages for Californian plants occur despite incurring higher herbivory at both sites than the native Oregonian plants. Our findings suggest that a lag in adaptation causes maladaptation in extreme years that may be more prevalent in future climates, but local populations still have high growth rates and thus are not yet threatened.
Journal Article
Production of Antioxidant Molecules in Polygonum aviculare under Metal Stress: A Possible Tool in the Evaluation of Plant Metal Tolerance
2020
Plants growing on heavy metal (HM)-polluted soils show toxicity symptoms, such as chlorosis and growth reduction, and undergo oxidative stress due to the formation of reactive oxygen species (ROS). Plants overcome oxidative stress by producing a wide range of antioxidant molecules, such as polyphenols and flavonoids. The aim of the present work was to study the accumulation of these molecules in response to increasing concentrations of Cd, Cr, Cu, Ni, Pb and Zn and to assess whether they can be used as a tool in assessing metal-related stress in Polygonum aviculare and Senecio vulgaris. On average, P. aviculare shoots accumulated lower amounts of metals than S. vulgaris shoots. The uptake of all six elements was correlated and proportional to their concentration in the nutrient solution (p > 0.9), with the bioaccumulation factor (BAF) being >1 for most of them. The present research demonstrated that 82% of the samples showed a good correlation (|p| > 0.5) between the level of polyphenols, flavonoids and antioxidant activity and the metal concentration in plant shoots, confirming that the metal stress level and production of phenolic compounds having antioxidant activity were strictly connected. Nonetheless, the mere quantification of these molecules cannot identify the type of metal that caused the oxidative stress, neither determine the concentration of the stressors. The five tested populations of each species did not show any specific adaptation to the environment of origin. Keywords: heavy metals; oxidative stress; antioxidant activity; polyphenols; flavonoids; photosynthetic pigments; population variability
Journal Article
Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales
2015
PREMISE OF THE STUDY: CYCLOIDEA2 (CYC2)-like and RADIALIS (RAD)-like genes are needed for the normal development of corolla bilateral Antirrhinum majus L. (snapdragon, Plantaginaceae, Lamiales). However, if and how changes in expression of CYC2-like and RAD-like genes correlate with the origin of corolla bilateral symmetry early in Lamiales remains largely unknown. The asymmetrical expression of CVC2-like and/or RAD-like genes during floral meristem development could be ancestral or derived in Plantaginaceae. METHODS: We used in situ RNA localization to examine the expression of CYC2-like and RAD-like genes in two early-diverging Lamiales. KEY RESULTS: CYC2-like and RAD-like genes are expressed broadly in the floral meristems in early-diverging Lamiales with radially symmetrical corollas, contrast to their restricted expression in adaxial/lateral regions in core Lamiales. The expression pattern of CVC2-like genes has evolved in stepwise fashion, in that CYC2-like genes are likely expressed briefly in the floral meristem during flower development in sampled Oleaceae; prolonged expression of CYC2-like genes in petals originated in the common ancestor of Tetrachondraceae and core Lamiales, and asymmetrical expression in adaxial/lateral petals appeared later, in the common ancestor of the core Lamiales. Likewise, expression of RAD-like genes in petals appeared in early-diverging Lamiales earlier; asymmetrical expression in adaxial/lateral petals then appeared in core Lamiales. CONCLUSIONS: These data plus published reports of CYC2-like and RAD-like genes show that asymmetrical expression of these two genes is likely and correlates with the origins of corolla bilateral symmetry.
Journal Article
Mazusjiangshiense (Mazaceae), a new species from China: evidence from morphological and molecular analyses
2024
Utilising both morphological and molecular analyses, this study unveils
, a novel addition to the Mazaceae family, discovered in Shaowu County, Fujian Province, China. The comprehensive description and illustrations provided here are a result of a meticulous exploration of its morphological features. While bearing a resemblance to
, this new-found species is distinguished by three distinct characteristics: its stems are delicately soft, its leaves possess a membranous quality and the ovary is notably villous at the apex. Integration of molecular evidence, derived from the nuclear ribosomal DNA (nrITS) and three plastid DNA sequences (
,
and
), unequivocally supports the classification of
as a distinct species. Notably, the molecular analysis positions it as a sister species to
, underscoring the phylogenetic relationships within the genus
. Our research not only introduces
as a novel taxonomic entity, but also provides a nuanced understanding of its morphological differences and molecular affinities, enriching our comprehension of the diversity and evolutionary relationships of Mazaceae.
Journal Article
Biogeographical patterns and speciation of the genus Pinguicula (Lentibulariaceae) inferred by phylogenetic analyses
by
Sun, Miao
,
Setoguchi, Hiroaki
,
Roberts, David L.
in
Analysis
,
Biodiversity
,
Biological diversity
2021
Earlier phylogenetic studies in the genus Pinguicua (Lentibulariaceae) suggested that the species within a geographical region was rather monophyletic, although the sampling was limited or was restricted to specific regions. Those results conflicted with the floral morphology-based classification, which has been widely accepted to date. In the current study, one nuclear ribosomal DNA (internal transcribed spacer; ITS) and two regions of chloroplast DNA ( matK and rpl32-trnL ), from up to ca. 80% of the taxa in the genus Pinguicula , covering all three subgenera, were sequenced to demonstrate the inconsistency and explore a possible evolutionary history of the genus. Some incongruence was observed between nuclear and chloroplast topologies and the results from each of the three DNA analyses conflicted with the morphology-based subgeneric divisions. Both the ITS tree and network, however, corresponded with the biogeographical patterns of the genus supported by life-forms (winter rosette or hibernaculum formation) and basic chromosome numbers (haploidy). The dormant strategy evolved in a specific geographical region is a phylogenetic constraint and a synapomorphic characteristic within a lineage. Therefore, the results denied the idea that the Mexican group, morphologically divided into the three subgenera, independently acquired winter rosette formations. Topological incongruence among the trees or reticulations, indicated by parallel edges in phylogenetic networks, implied that some taxa originated by introgressive hybridisation. Although there are exceptions, species within the same geographical region arose from a common ancestor. Therefore, the classification by the floral characteristics is rather unreliable. The results obtained from this study suggest that evolution within the genus Pinguicula has involved; 1) ancient expansions to geographical regions with gene flow and subsequent vicariance with genetic drift, 2) acquirement of a common dormant strategy within a specific lineage to adapt a local climate (i.e., synapomorphic characteristic), 3) recent speciation in a short time span linked to introgressive hybridisation or multiplying the ploidy level (i.e., divergence), and 4) parallel evolution in floral traits among lineages found in different geographical regions (i.e., convergence). As such, the floral morphology masks and obscures the phylogenetic relationships among species in the genus.
Journal Article
The Chloroplast Genome of Utricularia reniformis Sheds Light on the Evolution of the ndh Gene Complex of Terrestrial Carnivorous Plants from the Lentibulariaceae Family
by
Pinheiro, Daniel G.
,
Penha, Helen Alves
,
Miranda, Vitor F. O.
in
Arabidopsis thaliana
,
Bayes Theorem
,
Biological evolution
2016
Lentibulariaceae is the richest family of carnivorous plants spanning three genera including Pinguicula, Genlisea, and Utricularia. Utricularia is globally distributed, and, unlike Pinguicula and Genlisea, has both aquatic and terrestrial forms. In this study we present the analysis of the chloroplast (cp) genome of the terrestrial Utricularia reniformis. U. reniformis has a standard cp genome of 139,725bp, encoding a gene repertoire similar to essentially all photosynthetic organisms. However, an exclusive combination of losses and pseudogenization of the plastid NAD(P)H-dehydrogenase (ndh) gene complex were observed. Comparisons among aquatic and terrestrial forms of Pinguicula, Genlisea, and Utricularia indicate that, whereas the aquatic forms retained functional copies of the eleven ndh genes, these have been lost or truncated in terrestrial forms, suggesting that the ndh function may be dispensable in terrestrial Lentibulariaceae. Phylogenetic scenarios of the ndh gene loss and recovery among Pinguicula, Genlisea, and Utricularia to the ancestral Lentibulariaceae cladeare proposed. Interestingly, RNAseq analysis evidenced that U. reniformis cp genes are transcribed, including the truncated ndh genes, suggesting that these are not completely inactivated. In addition, potential novel RNA-editing sites were identified in at least six U. reniformis cp genes, while none were identified in the truncated ndh genes. Moreover, phylogenomic analyses support that Lentibulariaceae is monophyletic, belonging to the higher core Lamiales clade, corroborating the hypothesis that the first Utricularia lineage emerged in terrestrial habitats and then evolved to epiphytic and aquatic forms. Furthermore, several truncated cp genes were found interspersed with U. reniformis mitochondrial and nuclear genome scaffolds, indicating that as observed in other smaller plant genomes, such as Arabidopsis thaliana, and the related and carnivorous Genlisea nigrocaulis and G. hispidula, the endosymbiotic gene transfer may also shape the U. reniformis genome in a similar fashion. Overall the comparative analysis of the U. reniformis cp genome provides new insight into the ndh genes and cp genome evolution of carnivorous plants from Lentibulariaceae family.
Journal Article
Health Benefits of Antioxidant Bioactive Compounds in the Fruits and Leaves of ILonicera caerulea/I L. and IAronia melanocarpa/I Elliot
by
Cosma, Madalina
,
Motelica, Ludmila
,
Roncea, Florentina Nicoleta
in
Lamiales
,
Physiological aspects
2023
Lonicera caerulaea L. and Aronia melanocarpa (Michx.) Elliot fruits are frequently used for their health benefits as they are rich in bioactive compounds. They are recognized as a source of natural and valuable phytonutrients, which makes them a superfood. L. caerulea presents antioxidant activity three to five times higher than other berries which are more commonly consumed, such as blackberries or strawberries. In addition, their ascorbic acid level is the highest among fruits. The species A. melanocarpa is considered one of the richest known sources of antioxidants, surpassing currants, cranberries, blueberries, elderberries, and gooseberries, and contains one of the highest amounts of sorbitol. The non-edible leaves of genus Aronia became more extensively analyzed as a byproduct or waste material due to their high polyphenol, flavonoid, and phenolic acid content, along with a small amount of anthocyanins, which are used as ingredients in nutraceuticals, herbal teas, bio-cosmetics, cosmeceuticals, food and by the pharmaceutical industry. These plants are a rich source of vitamins, tocopherols, folic acid, and carotenoids. However, they remain outside of mainstream fruit consumption, being well known only to a small audience. This review aims to shed light on L. caerulaea and A. melanocarpa and their bioactive compounds as healthy superfoods with antioxidant, anti-inflammatory, antitumor, antimicrobial, and anti-diabetic effects, and hepato-, cardio-, and neuro-protective potential. In this view, we hope to promote their cultivation and processing, increase their commercial availability, and also highlight the ability of these species to be used as potential nutraceutical sources, helpful for human health.
Journal Article
INymphoides peltata/I Root Extracts Improve Atopic Dermatitis by Regulating Skin Inflammatory and Anti-Oxidative Enzymes in 2,4-Dinitrochlorobenzene -Induced SKH-1 Hairless Mice
2023
Nymphoides peltata is widely used pharmacologically in Traditional Chinese Medicine and Ayurvedic medicine as a diuretic, antipyretic, or choleretic and to treat ulcers, snakebites, and edema. Previous studies have shown that phytochemicals from N. peltata have physiological activities such as anti-inflammatory, anti-tumor, and anti-wrinkle properties. Nevertheless, research on the anti-atopic dermatitis (AD) effect of N. peltata extract is limited. This study was undertaken to assess the in vitro and in vivo anti-atopic and antioxidant activities of a 95% EtOH extract of N. peltata roots (NPR). PI-induced RBL-2H3 cells and two typical hapten mice (oxazolone-induced BALB/c mice and 2,4-dinitrochlorobenzene (DNCB)-induced SKH-1 hairless mice) were used to investigate the effect of NPR extract on AD. The expressions of AD-related inflammatory cytokines, skin-related genes, and antioxidant enzymes were analyzed by ELISA, immunoblotting, and immunofluorescence, and skin hydration was measured using Aquaflux AF103 and SKIN-O-MAT instruments. The chemical composition of NPR extract was analyzed using an HPLC-PDA system. In this study, NPR extracts were shown to most efficiently inhibit IL-4 in PI-induced RBL-2H3 cells and AD-like skin symptoms in oxazolone-BALB/c mice compared to its whole and aerial extracts. NPR extract markedly reduced DNCB-induced increases in mast cells, epidermal thickness, IL-4 and IgE expressions, and atopic-like symptoms in SKH-1 hairless mice. In addition, NPR extract suppressed DNCB-induced changes in the expressions of skin-related genes and skin hydration and activated the Nrf2/HO-1 pathway. Three phenolic acids (chlorogenic acid, 3,5-dicaffeoylquinic acid, and 3,4-dicaffeoylquinic acid) were identified by HPLC-PDA in NPR extract. The study shows that NPR extract exhibits anti-atopic activities by inhibiting inflammatory and oxidative stress and improving skin barrier functions, and indicates that NPR extract has potential therapeutic use for the prevention and treatment of AD.
Journal Article
Mitochondrial Genome Sequence of Salvia officinalis (Lamiales: Lamiaceae) Suggests Diverse Genome Structures in Cogeneric Species and Finds the Stop Gain of Genes through RNA Editing Events
2023
Our previous study was the first to confirm that the predominant conformation of mitochondrial genome (mitogenome) sequence of Salvia species contains two circular chromosomes. To further understand the organization, variation, and evolution of Salvia mitogenomes, we characterized the mitogenome of Salvia officinalis. The mitogenome of S. officinalis was sequenced using Illumina short reads and Nanopore long reads and assembled using a hybrid assembly strategy. We found that the predominant conformation of the S. officinalis mitogenome also had two circular chromosomes that were 268,341 bp (MC1) and 39,827 bp (MC2) in length. The S. officinalis mitogenome encoded an angiosperm-typical set of 24 core genes, 9 variable genes, 3 rRNA genes, and 16 tRNA genes. We found many rearrangements of the Salvia mitogenome through inter- and intra-specific comparisons. A phylogenetic analysis of the coding sequences (CDs) of 26 common protein-coding genes (PCGs) of 11 Lamiales species and 2 outgroup taxa strongly indicated that the S. officinalis was a sister taxon to S. miltiorrhiza, consistent with the results obtained using concatenated CDs of common plastid genes. The mapping of RNA-seq data to the CDs of PCGs led to the identification of 451 C-to-U RNA editing sites from 31 PCGs of the S. officinalis mitogenome. Using PCR amplification and Sanger sequencing methods, we successfully validated 113 of the 126 RNA editing sites from 11 PCGs. The results of this study suggest that the predominant conformation of the S. officinalis mitogenome are two circular chromosomes, and the stop gain of rpl5 was found through RNA editing events of the Salvia mitogenome.
Journal Article