Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
617 result(s) for "Lamins a/C"
Sort by:
Blocking Protein Farnesyltransferase Improves Nuclear Blebbing in Mouse Fibroblasts with a Targeted Hutchinson-Gilford Progeria Syndrome Mutation
Hutchinson-Gilford progeria syndrome (HGPS), a progeroid syndrome in children, is caused by mutations in LMNA (the gene for prelamin A and lamin C) that result in the deletion of 50 aa within prelamin A. In normal cells, prelamin A is \"CAAX protein\" that is farnesylated and then processed further to generate mature lamin A, which is a structural protein of the nuclear lamina. The mutant prelamin A in HGPS, which is commonly called progerin, retains the CAAX motif that triggers farnesylation, but the 50-aa deletion prevents the subsequent processing to mature lamin A. The presence of progerin adversely affects the integrity of the nuclear lamina, resulting in misshapen nuclei and nuclear blebs. We hypothesized that interfering with protein farnesylation would block the targeting of progerin to the nuclear envelope, and we further hypothesized that the mislocalization of progerin away from the nuclear envelope would improve the nuclear blebbing phenotype. To approach this hypothesis, we created a gene-targeted mouse model of HGPS, generated genetically identical primary mouse embryonic fibroblasts, and we then examined the effect of a farnesyltransferase inhibitor on nuclear blebbing. The farnesyltransferase inhibitor mislocalized progerin away from the nuclear envelope to the nucleoplasm, as determined by immunofluoresence microscopy, and resulted in a striking improvement in nuclear blebbing (P < 0.0001 by χ2statistic). These studies suggest a possible treatment strategy for HGPS.
Nuclear accumulation of UBC9 contributes to SUMOylation of lamin A/C and nucleophagy in response to DNA damage
Background Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved intracellular mechanism for lysosomal degradation of damaged cellular components. The specific degradation of nuclear components by the autophagy pathway is called nucleophagy. Most studies have focused on autophagic turnover of cytoplasmic materials, and little is known about the role of autophagy in the degradation of nuclear components. Methods Human MDA-MB-231 and MCF-7 breast cancer cell lines were used as model systems in vitro. Induction of nucleophagy by nuclear DNA leakage was determined by western blot and immunofluorescence analyses. The interaction and colocalization of LC3 and lamin A/C was determined by immunoprecipitation and immunofluorescence. The role of the SUMO E2 ligase, UBC9, on the regulation of SUMOylation of lamin A/C and nucleophagy was determined by siRNA silencing of UBC9, and analyzed by immunoprecipitation and immunofluorescence. Results DNA damage induced nuclear accumulation of UBC9 ligase which resulted in SUMOylation of lamin A/C and that SUMOylation of this protein was required for the interaction between the autophagy protein LC3 and lamin A/C, which was required for nucleophagy. Knockdown of UBC9 prevented SUMOylation of lamin A/C and LC3-lamin A/C interaction. This attenuated nucleophagy which degraded nuclear components lamin A/C and leaked nuclear DNA mediated by DNA damage. Conclusions Our findings suggest that nuclear DNA leakage activates nucleophagy through UBC9-mediated SUMOylation of lamin A/C, leading to degradation of nuclear components including lamin A/C and leaked nuclear DNA.
Nuclear envelopathies: a complex LINC between nuclear envelope and pathology
Since the identification of the first disease causing mutation in the gene coding for emerin, a transmembrane protein of the inner nuclear membrane, hundreds of mutations and variants have been found in genes encoding for nuclear envelope components. These proteins can be part of the inner nuclear membrane (INM), such as emerin or SUN proteins, outer nuclear membrane (ONM), such as Nesprins, or the nuclear lamina, such as lamins A and C. However, they physically interact with each other to insure the nuclear envelope integrity and mediate the interactions of the nuclear envelope with both the genome, on the inner side, and the cytoskeleton, on the outer side. The core of this complex, called LINC (LInker of Nucleoskeleton to Cytoskeleton) is composed of KASH and SUN homology domain proteins. SUN proteins are INM proteins which interact with lamins by their N-terminal domain and with the KASH domain of nesprins located in the ONM by their C-terminal domain. Although most of these proteins are ubiquitously expressed, their mutations have been associated with a large number of clinically unrelated pathologies affecting specific tissues. Moreover, variants in SUN proteins have been found to modulate the severity of diseases induced by mutations in other LINC components or interactors. For these reasons, the diagnosis and the identification of the molecular explanation of “nuclear envelopathies” is currently challenging. The aim of this review is to summarize the human diseases caused by mutations in genes coding for INM proteins, nuclear lamina, and ONM proteins, and to discuss their potential physiopathological mechanisms that could explain the large spectrum of observed symptoms.
Lamin A/C Mechanotransduction in Laminopathies
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Characterization of cardiac involvement in children with LMNA-related muscular dystrophy
Introduction: LMNA-related muscular dystrophy is a rare entity that produce “laminopathies” such as Emery–Dreifuss muscular dystrophy (EDMD), limb–girdle muscular dystrophy type 1B (LGMD1B), and LMNA-related congenital muscular dystrophy (L-CMD). Heart failure, malignant arrhythmias, and sudden death may occur. No consensus exists on cardiovascular management in pediatric laminopathies. The aim was to perform an exhaustive cardiologic follow-up in pediatric patients diagnosed with LMNA-related muscular dystrophy. Methods: Baseline cardiac work-up consisted of clinical assessment, transthoracic Doppler echocardiography, 12-lead electrocardiogram, electrophysiological study, and implantation of a long-term implantable cardiac loop recorder (ILR). Results: We enrolled twenty-eight pediatric patients diagnosed with EDMD (13 patients), L-CMD (11 patients), LGMD1B (2 patients), and LMNA-related mild weakness (2 patients). Follow-up showed dilated cardiomyopathy (DCM) in six patients and malignant arrhythmias in five (four concomitant with DCM) detected by the ILR that required implantable cardioverter defibrillator (ICD) implantation. Malignant arrhythmias were detected in 20% of our cohort and early-onset EDMD showed worse cardiac prognosis. Discussion: Patients diagnosed with early-onset EDMD are at higher risk of DCM, while potentially life-threatening arrhythmias without DCM appear earlier in L-CMD patients. Early onset neurologic symptoms could be related with worse cardiac prognosis. Specific clinical guidelines for children are needed to prevent sudden death.
Lamin A/C: Function in Normal and Tumor Cells
This review is focused on lamin A/C, a nuclear protein with multiple functions in normal and diseased cells. Its functions, as known to date, are summarized. This summary includes its role in maintaining a cell’s structural stability, cell motility, mechanosensing, chromosome organization, gene regulation, cell differentiation, DNA damage repair, and telomere protection. As lamin A/C has a variety of critical roles within the cell, mutations of the lamin A/C gene and incorrect processing of the protein results in a wide variety of diseases, ranging from striated muscle disorders to accelerated aging diseases. These diseases, collectively termed laminopathies, are also touched upon. Finally, we review the existing evidence of lamin A/C’s deregulation in cancer. Lamin A/C deregulation leads to various traits, including genomic instability and increased tolerance to mechanical insult, which can lead to more aggressive cancer and poorer prognosis. As lamin A/C’s expression in specific cancers varies widely, currently known lamin A/C expression in various cancers is reviewed. Additionally, Lamin A/C’s potential as a biomarker in various cancers and as an aid in more accurately diagnosing intermediate Gleason score prostate cancers is also discussed.
Expression of Lamin A/C in early-stage breast cancer and its prognostic value
PurposeLamins A/C, a major component of the nuclear lamina, play key roles in maintaining nuclear integrity, regulation of gene expression, cell proliferation and apoptosis. Reduced lamin A/C expression in cancer has been reported to be a sign of poor prognosis. However, its clinical significance in breast cancer remains to be defined. This study aimed to evaluate expression and prognostic significance of lamin A/C in early-stage breast cancer.MethodsUsing immunohistochemical staining of tissue microarrays, expression of lamin A/C was evaluated in a large well-characterised series of early-stage operable breast cancer (n = 938) obtained from Nottingham Primary Breast Carcinoma Series. Association of lamin A/C expression with clinicopathological parameters and outcome was evaluated.ResultsPositive expression rate of lamin A/C in breast cancer was 42.2% (n = 398). Reduced/loss of expression of lamin A/C was significantly associated with high histological grade (p < 0.001), larger tumour size (p = 0.004), poor Nottingham Prognostic Index score (p < 0.001), lymphovascular invasion (p = 0.014) and development of distant metastasis (p = 0.027). Survival analysis showed that reduced/loss of expression of lamin A/C was significantly associated with shorter breast cancer-specific survival (p = 0.008).ConclusionThis study suggests lamin A/C plays a role in breast cancer and loss of its expression is associated with variables of poor prognosis and shorter outcome.
Enhanced Expression of a Novel Lamin A/C Splice Variant in Idiopathic Pulmonary Fibrosis Lung
In idiopathic pulmonary fibrosis (IPF), the normal delicate lung architecture is replaced with rigid extracellular matrix (ECM) as a result of the accumulation of activated myofibroblasts and excessive deposition of ECM. Lamins have a role in fostering mechanosignaling from the ECM to the nucleus. Although there is a growing number of studies on lamins and associated diseases, there are no prior reports linking aberrations in lamins with pulmonary fibrosis. Here, we discovered, through analysis of RNA sequencing data, a novel isoform of lamin A/C that is more highly expressed in IPF compared with control lung. This novel LMNA (lamin A/C) splice variant includes retained introns 10 and 11 and exons 11 and 12 as documented by rapid amplification of cDNA ends. We found that this novel isoform is induced by stiff ECM. To better clarify the specific effects of this novel isoform of lamin A/C and how it may contribute to the pathogenesis of IPF, we transduced the lamin transcript into primary lung fibroblasts and alveolar epithelial cells and found that it impacts several biological effects, including cell proliferation, senescence, cell contraction, and the transition of fibroblasts to myofibroblasts. We also observed that type II epithelial cells and myofibroblasts in the IPF lung exhibited wrinkled nuclei, and this is notable because this has not been previously described and is consistent with laminopathy-mediated cellular effects.
Overexpression of lamin B1 induces mitotic catastrophe in colon cancer LoVo cells and is associated with worse clinical outcomes
Lamins are the major components of the nuclear lamina and play important roles in many cellular processes. The role of lamins in cancer development and progression is still unclear but it is known that reduced expression of lamin B1 has been observed in colon cancer. Thus, the aim of the present study was to elucidate the influence of LMNB1 upregulation on colon cancer cell line after treatment with 5-FU. The results indicate, that overexpression of LMNB1 induced dose-dependent cell death mainly by mitotic catastrophe pathway. Furthermore, after upregulation of this intermediate protein, lower expression of lamin A/C was observed. Moreover, we observed an increase in fluorescence intensity of nuclear β-catenin and decrease in cell-cell interaction area, that was connected with inhibition of colon cancer cells migration. We present the reorganization of actin filament and β-tubulin, because these cytoskeletal proteins are directly or indirectly linked with lamins, and analyzing publicly available mRNA data we show that patients with overexpression of LMNB1 are characterized by lower survival rates within the first 30 months from diagnosis. Summarizing our results, upregulation of LMNB1 induce mitotic catastrophe and only small percentage of apoptosis. Moreover, we showed inhibition of cell migration and promotion of cell-cell contact as a results of direct and indirect regulation of β-catenin, lamin A/C, actin and tubulin. However, it is possible that mitotic catastrophe cells in patients with colorectal cancer may be a reservoir of the cells responsible for faster disease progression, and further investigations are necessary to confirm this hypothesis.
High matrix stiffness promotes senescence of type II alveolar epithelial cells by lysosomal degradation of lamin A/C in pulmonary fibrosis
Background Cellular senescence is one of the key steps in the progression of pulmonary fibrosis, and the senescence of type II alveolar epithelial cells (AEC IIs) may potentially accelerate the progression of pulmonary fibrosis. However, the molecular mechanisms underlying cellular senescence in pulmonary fibrosis remain unclear. Methods The researchers first conducted in vitro experiments to investigate whether AEC IIs cultured on high matrix stiffness would lead to cellular senescence. Next, samples from mouse pulmonary fibrosis models and clinical idiopathic pulmonary fibrosis (IPF) patients were tested to observe extracellular matrix deposition, lamin A/C levels, and cellular senescence status in lung tissue. Construct lamin A/C knockdown and overexpression systems separately in AEC IIs, and observe whether changes in lamin A/C levels lead to cellular senescence. Further explore the degradation mechanism of lamin A/C using protein degradation inhibitors. Results In vitro experiments have found that high matrix stiffness promotes senescence of AEC IIs. In a mouse model of pulmonary fibrosis, AEC IIs were found to exhibit significant cellular senescence on day 21. In clinical IPF samples, it was found that senescent cells expressed low levels of lamin A/C. In the lamin A/C SiRNA knockdown system, it was further confirmed that AEC IIs with low levels of lamin A/C are more prone to cellular senescence. Under high matrix stiffness, lamin A/C in AEC IIs is degraded through the autophagy lysosome pathway. The use of chloroquine can effectively alleviate cellular senescence. Conclusions High matrix stiffness degrades lamin A/C in pulmonary fibrosis through lysosomal degradation pathways, promoting AEC II senescence. Inhibition the degradation of lamin A/C could alleviate AEC II senescence.