Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
13,707
result(s) for
"Land restoration"
Sort by:
Industrial heritage sites in transformation : clash of discourses
\"The management of industrial heritage sites requires rethinking in the context of urban change, and the issue of how to balance protection, preservation/conservation, and development becomes all the more crucial as industrial heritage sites grow in number. This brings into play new challenges--not only through the known conflicts between monument preservation and contemporary architecture, but also with the increasing demand for economic urban development by reusing the built heritage of former industrial sites. This book explores the conservation and change of industrial heritage sites in transformation, presenting and examining ten European and Asian case studies. The interdisciplinary approach of the book connects a diversity of rationales and discourses, including monument protection, World Heritage conventions, urban regeneration, urban planning and design, architecture, and politics. This is the first book to deepen the understanding of industrial heritage site management as a networked, multi-dimensional task involving diverse social agents and societal discourses. \"-- Provided by publisher.
Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration
by
Bowker, Matthew A.
,
Phillips, Susan L.
,
Belnap, Jayne
in
arid lands
,
Arid soils
,
Biological soil crusts
2005
Desertification is a global problem, costly to national economies and human societies. Restoration of biological soil crusts (BSCs) may have an important role to play in the reversal of desertification due to their ability to decrease erosion and enhance soil fertility. To determine if there is evidence that lower fertility may hinder BSC recolonization, we investigated the hypothesis that BSC abundance is driven by soil nutrient concentrations. At a regional scale (north and central Colorado Plateau, USA), moss and lichen cover and richness are correlated with a complex water-nutrient availability gradient and have approximately six-fold higher cover and approximately two-fold higher species richness on sandy soils than on shale-derived soils. At a microscale, mosses and lichens are overrepresented in microhabitats under the north sides of shrub canopies, where water and nutrients are more available. At two spatial scales, and at the individual species and community levels, our data are consistent with the hypothesis that distributions of BSC organisms are determined largely by soil fertility. The micronutrients Mn and Zn figured prominently and consistently in the various analyses, strongly suggesting that these elements are previously unstudied limiting factors in BSC development. Structural-equation modeling of our data is most consistent with the hypothesis of causal relationships between the availability of micronutrients and the abundance of the two major nitrogen (N) fixers of BSCs. Specifically, higher Mn availability may determine greater Collema tenax abundance, and both Mn and Zn may limit Collema coccophorum; alternative causal hypotheses were less consistent with the data. We propose experimental trials of micronutrient addition to promote the restoration of BSC function on disturbed lands. Arid lands, where BSCs are most prevalent, cover ~40% of the terrestrial surface of the earth; thus the information gathered in this study is potentially useful in many places worldwide.
Journal Article
Soil-Related Sustainable Development Goals: Four Concepts to Make Land Degradation Neutrality and Restoration Work
2018
In the effort to achieve the Sustainable Development Goals (SDGs) related to food, health, water, and climate, an increase in pressure on land is highly likely. To avoid further land degradation and promote land restoration, multifunctional use of land is needed within the boundaries of the soil-water system. In addition, awareness-raising, a change in stakeholders’ attitudes, and a change in economics are essential. The attainment of a balance between the economy, society, and the biosphere calls for a holistic approach. In this paper, we introduce four concepts that we consider to be conducive to realizing LDN in a more integrated way: systems thinking, connectivity, nature-based solutions, and regenerative economics. We illustrate the application of these concepts through three examples in agricultural settings. Systems thinking lies at the base of the three others, stressing feedback loops but also delayed responses. Their simultaneous use will result in more robust solutions, which are sustainable from an environmental, societal, and economic point of view. Solutions also need to take into account the level of scale (global, national, regional, local), stakeholders’ interests and culture, and the availability and boundaries of financial and natural capital. Furthermore, sustainable solutions need to embed short-term management in long-term landscape planning. In conclusion, paradigm shifts are needed. First, it is necessary to move from excessive exploitation in combination with environmental protection, to sustainable use and management of the soil-water system. To accomplish this, new business models in robust economic systems are needed based on environmental systems thinking; an approach that integrates environmental, social, and economic interests. Second, it is necessary to shift from a “system follows function” approach towards a “function follows system” one. Only by making the transition towards integrated solutions based on a socio-economical-ecological systems analysis, using concepts such as nature-based solutions, do we stand a chance to achieve Land Degradation Neutrality by 2030. To make these paradigm shifts, awareness-raising in relation to a different type of governance, economy and landscape and land-use planning and management is needed.
Journal Article
Do adaptive policy adjustments deliver ecosystem-agriculture-economy co-benefits in land degradation neutrality efforts? Evidence from southeast coast of China
by
Wang, Yixin
,
Jiang, Chong
,
Yang, Zhiyuan
in
Agricultural ecosystems
,
Agricultural land
,
Agricultural production
2023
Ecosystem restoration projects (ERPs) facilitate land degradation neutrality (LDN). However, the response dynamics and interactions of sectors within ecosystem-agriculture-economy nexus (EAEN) have not been sufficiently explored, which constrains the coordinated efficacy of LDN efforts. To bridge the knowledge gaps, the present study selected a land restoration hotspot in southeastern China as a case to investigate the simultaneous responses of the EAEN sectors to ERPs from a novel social-ecological system (SES)–based LDN perspective. Various biophysical models and Manne-Kendall trend test as well as multi-source spatially explicit data and socioeconomic statistics were applied to quantify the co-evolution of natural and socioeconomic indicators. ERPs converting cropland to woodland and grassland promoted vegetation restoration, reduced soil erosion, and enhanced carbon sequestration. However, cropland loss initially resulted in a decline in grain productivity. Policy adjustments and improvements in ecosystem restoration efforts and agricultural production conditions improved food security and increased agricultural production capacity. Effective policymaking and favorable resident engagement accelerated the transformation from a grain-production-based agriculture to diversified industries and, by extension, economic output, income, and population. The success of socioeconomic development under the SES framework for LDN demonstrated that this strategy could achieve the desired environmental, agricultural, and economic targets. EAEN under the SES conceptual framework provides an inclusive, comprehensive LDN perspective and improves ERP efficacy. The findings of the present work might be applicable to other land restoration areas challenged by the complex interactions among multidimensional factors. Comparably successful implementation of these ERPs could be realized if individual environmental and socioeconomic conditions are thoroughly considered during the formulation of coordinated development policies.
Journal Article
Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)
by
Abhilash, Purushothaman Chirakkuzhyil
in
bioeconomics
,
Bonn challenge
,
corporate social responsibility
2021
Restoring the health of degraded land is critical for overall human development as land is a vital life-supporting system, directly or indirectly influencing the attainment of the UN Sustainable Development Goals (UN-SDGs). However, more than 33% of the global land is degraded and thereby affecting the livelihood of billions of people worldwide. Realizing this fact, the 73rd session of the UN Assembly has formally adopted a resolution to celebrate 2021–2030 as the UN Decade on Ecosystem Restoration (UN-DER), for preventing, halting, and reversing degradation of ecosystems worldwide. While this move is historic and beneficial for both people and the planet, restoration of degraded land at different scales and levels requires a paradigm shift in existing restoration approaches, fueled by the application of applied science to citizen/community-based science, and tapping of indigenous and local knowledge to advanced technological breakthroughs. In addition, there is a need of strong political will and positive behavioral changes to strengthen restoration initiatives at the grassroot level and involvement of people from all walks of life (i.e., from politicians to peasants and social workers to scientists) are essential for achieving the targets of the UN-DER. Similarly, financing restoration on the ground by the collective contribution of individuals (crowd funding) and institutions (institutional funding) are critical for maintaining the momentum. Private companies can earmark lion-share of their corporate social responsibility fund (CSR fund) exclusively for restoration. The adoption of suitable bioeconomy models is crucial for maintaining the perpetuity of the restoration by exploring co-benefits, and also for ensuring stakeholder involvements during and after the restoration. This review underpins various challenges and plausible solutions to avoid, reduce, and reverse global land degradation as envisioned during the UN-DER, while fulfilling the objectives of other ongoing initiatives like the Bonn Challenge and the UN-SDGs.
Journal Article
Mapping and monitoring peatland conditions from global to field scale
2024
Peatlands cover only 3–4% of the Earth’s surface, but they store nearly 30% of global soil carbon stock. This significant carbon store is under threat as peatlands continue to be degraded at alarming rates around the world. It has prompted countries worldwide to establish regulations to conserve and reduce emissions from this carbon rich ecosystem. For example, the EU has implemented new rules that mandate sustainable management of peatlands, critical to reaching the goal of carbon neutrality by 2050. However, a lack of information on the extent and condition of peatlands has hindered the development of national policies and restoration efforts. This paper reviews the current state of knowledge on mapping and monitoring peatlands from field sites to the globe and identifies areas where further research is needed. It presents an overview of the different methodologies used to map peatlands in nine countries, which vary in definition of peat soil and peatland, mapping coverage, and mapping detail. Whereas mapping peatlands across the world with only one approach is hardly possible, the paper highlights the need for more consistent approaches within regions having comparable peatland types and climates to inform their protection and urgent restoration. The review further summarises various approaches used for monitoring peatland conditions and functions. These include monitoring at the plot scale for degree of humification and stoichiometric ratio, and proximal sensing such as gamma radiometrics and electromagnetic induction at the field to landscape scale for mapping peat thickness and identifying hotspots for greenhouse gas (GHG) emissions. Remote sensing techniques with passive and active sensors at regional to national scale can help in monitoring subsidence rate, water table, peat moisture, landslides, and GHG emissions. Although the use of water table depth as a proxy for interannual GHG emissions from peatlands has been well established, there is no single remote sensing method or data product yet that has been verified beyond local or regional scales. Broader land-use change and fire monitoring at a global scale may further assist national GHG inventory reporting. Monitoring of peatland conditions to evaluate the success of individual restoration schemes still requires field work to assess local proxies combined with remote sensing and modeling. Long-term monitoring is necessary to draw valid conclusions on revegetation outcomes and associated GHG emissions in rewetted peatlands, as their dynamics are not fully understood at the site level. Monitoring vegetation development and hydrology of restored peatlands is needed as a proxy to assess the return of water and changes in nutrient cycling and biodiversity.
Journal Article
Impact of climate change on biodiversity and food security: a global perspective—a review article
2021
Climate change is happening due to natural factors and human activities. It expressively alters biodiversity, agricultural production, and food security. Mainly, narrowly adapted and endemic species are under extinction. Accordingly, concerns over species extinction are warranted as it provides food for all life forms and primary health care for more than 60–80% of humans globally. Nevertheless, the impact of climate change on biodiversity and food security has been recognized, little is explored compared to the magnitude of the problem globally. Therefore, the objectives of this review are to identify, appraise, and synthesize the link between climate change, biodiversity, and food security. Data, climatic models, emission, migration, and extinction scenarios, and outputs from previous publications were used. Due to climate change, distributions of species have shifted to higher elevations at a median rate of 11.0 m and 16.9 km per decade to higher latitudes. Accordingly, extinction rates of 1103 species under migration scenarios, provide 21–23% with unlimited migration and 38–52% with no migration. When an environmental variation occurs on a timescale shorter than the life of the plant any response could be in terms of a plastic phenotype. However, phenotypic plasticity could buffer species against the long-term effects of climate change. Furthermore, climate change affects food security particularly in communities and locations that depend on rain-fed agriculture. Crops and plants have thresholds beyond which growth and yield are compromised. Accordingly, agricultural yields in Africa alone could be decline by more than 30% in 2050. Therefore, solving food shortages through bringing extra land into agriculture and exploiting new fish stocks is a costly solution, when protecting biodiversity is given priority. Therefore, mitigating food waste, compensating food-insecure people conserving biodiversity, effective use of genetic resources, and traditional ecological knowledge could decrease further biodiversity loss, and meet food security under climate change scenarios. However, achieving food security under such scenario requires strong policies, releasing high-yielding stress resistant varieties, developing climate resilient irrigation structures, and agriculture. Therefore, degraded land restoration, land use changes, use of bio-energy, sustainable forest management, and community based biodiversity conservation are recommended to mitigate climate change impacts.
Journal Article
Lessons learned from invasive plant control experiments: a systematic review and meta-analysis
by
Adams, Carrie Reinhardt
,
Kettenring, Karin M.
in
Adaptive management
,
adverse effects
,
alien species
2011
1. Invasive plants can reduce biodiversity, alter ecosystem functions and have considerable economic impacts. Invasive plant control is therefore the focus of restoration research in invader-dominated ecosystems. Increasing the success of restoration practice requires analysis and synthesis of research findings and assessment of how experiments can be improved. 2. In a systematic review and meta-analysis of invasive plant control research papers, we asked: (i) what control efforts have been most successful; and (ii) what invasive plant control research best translates into successful restoration application? 3. The literature evaluated typically described experiments that were limited in scope. Most plot sizes were small (< 1 m²), time frames were brief (51% evaluated control for one growing season or less) and few species and ecosystems (predominantly grasslands) were studied throughout much of the literature. The scale at which most experiments were conducted potentially limits relevance to the large scales at which restorations typically occur. 4. Most studies focused on invasive species removal and lacked an evaluation of native revegetation following removal. Few studies (33%) included active revegetation even though native species propagule limitation was common. Restoration success was frequently complicated by re-invasion or establishment of a novel invader. 5. Few studies (29%) evaluated the costs of invasive species control. Additionally, control sometimes had undesirable effects, including negative impacts to native species. 6. Synthesis and applications. Despite a sizeable literature on invasive plant control experiments, many large-scale invasive plant management efforts have had only moderate restoration success. We identified several limitations to successful invasive species control including: minimal focus on revegetation with natives after invasive removal, limited spatial and temporal scope of invasive plant control research, and incomplete evaluation of costs and benefits associated with invasive species management actions. We suggest that information needed to inform invasive plant management can be better provided if researchers specifically address these limitations. Many limitations can be addressed by involving managers in research, particularly through adaptive management.
Journal Article
Restoration of Biodiversity and Ecosystem Services on Agricultural Land
by
Benayas, José M. Rey
,
Bullock, James M.
in
Abandoned land
,
Afforestation
,
Agricultural ecosystems
2012
Cultivation and cropping are major causes of destruction and degradation of natural ecosystems throughout the world. We face the challenge of maintaining provisioning services while conserving or enhancing other ecosystem services and biodiversity in agricultural landscapes. There is a range of possibilities within two types of intervention, namely \"land sharing\" and \"land separation\"; the former advocates the enhancement of the farmed environment, but the latter a separation between land designated for farming versus conservation. Land sharing may involve biodiversity-based agricultural practices, learning from traditional farming, changing from conventional to organic agriculture and from \"simple\" crops and pastures to agro-forestry systems, and restoring or creating specific elements to benefit wildlife and particular services without decreasing agricultural production. Land separation in the farmland context involves restoring or creating non-farmland habitat at the expense of field-level agricultural production—for example, woodland on arable land. Restoration by land sharing has the potential to enhance agricultural production, other ecosystem services and biodiversity at both the field and landscape scale; however, restoration by land separation would provide these benefits only at the landscape scale. Although recent debate has contrasted these approaches, we suggest they should be used in combination to maximize benefits. Furthermore, we suggest \"woodland islets\", an intermediate approach between land abandonment and farmland afforestation, for ecological restoration in extensive agricultural landscapes. This approach allows reconciliation of farmland production, conservation of values linked to cultural landscapes, enhancement of biodiversity, and provision of a range of ecosystem services. Beyond academic research, restoration projects within agricultural landscapes are essential if we want to halt environmental degradation and biodiversity loss.
Journal Article