Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
12,009
result(s) for
"Landing"
Sort by:
Airplane performance on grass airfields
\"Airplane Performance on Grass Airfields presents an experiment-based approach to analysis and flight testing of airfield performance on grass runways. It discusses improvements for operations efficiency and safety of these airfields. The book is intended for researchers and practicing engineers in the fields of aviation and aircraft safety and performance. The book analyzes the interaction between the landing gear wheels and the surface of a grass runways during both takeoff and landing. It covers test methods and devices for measuring performance and introduces an information system for the surface condition of grass airfields: GARFIELD\"-- Provided by publisher.
Landing Site Selection and Overview of China’s Lunar Landing Missions
by
Chen, Wangli
,
Liu, Jianjun
,
Tan, Xu
in
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
,
Chinese space program
2021
Landing site selection is of fundamental importance for lunar landing mission and it is closely related to the scientific goals of the mission. According to the widely concerned lunar science goals and the landing site selection of the ongoing lunar missions; China has carried out the selection of landing site for a series of Chang’ E (CE) missions. Under this background, this paper firstly introduced the principles, process, method and result of landing site selection of China’s Lunar Exploration Program (CLEP), and then analyzed the support of the selected landing sites to the corresponding lunar research. This study also pointed out the outcomes that could possibly contribute to the key lunar questions on the basis of the selected landing sites of CE-4 and CE-5 such as deep material in South Pole-Aitken (SPA) basin, lunar chronology, volcanic thermodynamics and geological structure evolution history of the Moon. Finally, this approach analyzed the development trend of China’s follow-up lunar landing missions, and suggested that the South Pole Region of the Moon could be the landing site of high priority for the future CE missions.
Journal Article
Daring dozen : the twelve who walked on the moon
by
Slade, Suzanne, author
,
Marks, Alan, 1957- illustrator
,
Bean, Alan, 1932-2018, writer of afterword
in
Project Apollo (U.S.) History Juvenile literature.
,
Project Apollo (U.S.) History.
,
Astronauts Juvenile literature.
2019
\"From Neil Armstrong's first small step to Gene Cernan's last footprint, award-winning author Suzanne Slade captures the experiences of the twelve astronauts who walked on the moon. The book reveals how the Apollo moon missions (1969-1972) built upon one another and unveiled important new discoveries about our nearest neighbor in space.\"-- Provided by publisher.
Selection of the InSight Landing Site
by
Morgan, G. A.
,
Pike, W. T.
,
Sklyanskiy, E.
in
Abundance
,
Aerospace Technology and Astronautics
,
Astrophysics and Astroparticles
2017
The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (
≤
−
2.5
km
for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ∼600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes <15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (<10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ∼5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection.
Journal Article
The right kind of crazy : a true story of teamwork, leadership, and high-stakes innovation
The true story of how an unlikely leader helped inspire a team of rocket scientists to achieve the near impossible: landing a two-thousand pound rover on Mars.
A New Blind Selection Approach for Lunar Landing Zones Based on Engineering Constraints Using Sliding Window
2023
Deep space exploration has risen in interest among scientists in recent years, with soft landings being one of the most straightforward ways to acquire knowledge about the Moon. In general, landing mission success depends on the selection of landing zones, and there are currently few effective quantitative models that can be used to select suitable landing zones. When automatic landing zones are selected, the grid method used for data partitioning tends to miss potentially suitable landing sites between grids. Therefore, this study proposes a new engineering-constrained approach for landing zone selection using LRO LOLA-based slope data as original data based on the sliding window method, which solves the spatial omission problem of the grid method. Using the threshold ratio, mean, coefficient of variation, Moran’s I, and overall rating, this method quantifies the suitability of each sliding window. The k-means clustering algorithm is adopted to determine the suitability threshold for the overall rating. The results show that 20 of 22 lunar soft landing sites are suitable for landing. Additionally, 43 of 50 landing sites preselected by the experts (suitable landing sites considering a combination of conditions) are suitable for landing, accounting for 90.9% and 86% of the total number, respectively, for a window size of 0.5° × 0.5°. Among them, there are four soft landing sites: Surveyor 3, 6, 7, and Apollo 15, which are not suitable for landing in the evaluation results of the grid method. However, they are suitable for landing in the overall evaluation results of the sliding window method, which significantly reduces the spatial omission problem of the grid method. In addition, four candidate landing regions, including Aristarchus Crater, Marius Hills, Moscoviense Basin, and Orientale Basin, were evaluated for landing suitability using the sliding window method. The suitability of the landing area within the candidate range of small window sizes was 0.90, 0.97, 0.49, and 0.55. This indicates the capacity of the method to analyze an arbitrary range during blind landing zone selection. The results can quantify the slope suitability of the landing zones from an engineering perspective and provide different landing window options. The proposed method for selecting lunar landing zones is clearly superior to the gridding method. It enhances data processing for automatic lunar landing zone selection and progresses the selection process from qualitative to quantitative.
Journal Article
A New Robust Lunar Landing Selection Method Using the Bayesian Optimization of Extreme Gradient Boosting Model (BO-XGBoost)
by
Wang, Yongzhi
,
Liu, Jianzhong
,
Liu, Hengxi
in
Accuracy
,
Artificial intelligence
,
Artificial neural networks
2024
The safety of lunar landing sites directly impacts the success of lunar exploration missions. This study develops a data-driven predictive model based on machine learning, focusing on engineering safety to assess the suitability of lunar landing sites and provide insights into key factors and feature representations. Six critical engineering factors were selected as constraints for evaluation: slope, elevation, roughness, hillshade, optical maturity, and rock abundance. The XGBoost model was employed to simulate and predict the characteristics of landing areas and Bayesian optimization was used to fine-tune the model’s key hyperparameters, enhancing its predictive performance. The results demonstrate that this method effectively extracts relevant features from multi-source remote sensing data and quantifies the suitability of landing zones, achieving an accuracy of 96% in identifying landing sites (at a resolution of 0.1° × 0.1°), with AUC values exceeding 95%. Notably, slope was recognized as the most critical factor affecting safety. Compared to assessment processes based on Convolutional Neural Networks (CNNs) and Random Forest (RF) models, XGBoost showed superior performance in handling missing values and evaluating feature importance accuracy. The findings suggest that the BO-XGBoost model shows notable classification performance in evaluating the suitability of lunar landing sites, which may provide valuable support for future landing missions and contribute to optimizing lunar exploration efforts.
Journal Article
A Review of Material-Related Mechanical Failures and Load Monitoring-Based Structural Health Monitoring (SHM) Technologies in Aircraft Landing Gear
2025
The aircraft landing gear system is vital in ensuring the aircraft’s functional completeness and operational safety. The mechanical structures of the landing gear must withstand significant operational forces, including repeated high-intensity impact loads, throughout their service life. At the same time, they must resist environmental degradation, such as corrosion, temperature fluctuations, and humidity, to ensure structural integrity and long-term reliability. Under this premise, investigating material-related mechanical failures in the landing gear is of great significance for preventing landing gear failures and ensuring aviation safety. Compared to failure investigations, structural health monitoring (SHM) plays a more active role in failure prevention for aircraft landing gears. SHM technologies identify the precursors of potential failures and continuously monitor the operational or health conditions of landing gear structures, which facilitates condition-based maintenance. This paper reviews various landing gear material-related failure investigations. The review suggests a significant portion of these failures can be attributed to material fatigue, which is either induced by abnormal high-stress concentration or corrosion. This paper also reviews a series of load monitoring-based landing gear SHM studies. It is revealed that weight and balance measurement, hard landing detection, and structure load monitoring are the most typical monitoring activities in landing gears. An analytical discussion is also presented on the correlation between reviewed landing gear failures and SHM activities, a comparison of sensors, and the potential shift in load-based landing gear SHM in response to the transition of landing gear design philosophy from safe life to damage tolerance.
Journal Article
Research on Monte Carlo simulation of CAT III auto-landing system
2023
Approach/Landing is the phase of most accidents occur to endanger civil aircraft safety. CAT III autoland operation can improve the safety and reliability of aircraft when approach and landing in bad weather conditions, and reduce pilot’s working loads, so CAT III autoland control law design is an important task in advanced flight control system research. However, the most of the related researches are requirement based rather and scenario based. Firstly, the article analyzes the Monte Carlo simulation requirements based on airworthiness requirements of auto-landing system and proposes a Monte Carlo simulation model scheme considering the uncertainty of aircraft dynamic model and the actuator model, the error of sensors and the disturbance of wind, then implements the simulation based on a desktop simulation platform. The simulation result shows that the designed auto-landing system can assure the safe and stable landing of the aircraft on the condition of all kinds of uncertainty, the touchdown point, the vertical landing speed and the attitude are all compliance with the expectation criteria, satisfying the requirement of airworthiness items.
Journal Article
Design optimization of aircraft landing gear assembly under dynamic loading
2018
Aircraft landing gear assemblies comprise of various subsystems working in unison to enable functionalities such as taxiing, take-off and landing. As development cycles and prototyping iterations begin to shorten, it is important to develop and improve practical methodologies to meet certain design metrics. This paper presents an efficient methodology that applies high-fidelity multi-disciplinary design optimization techniques to commercial landing gear assemblies, for weight, cost, and structural performance by considering both structural and dynamic behaviours. First, a simplified landing gear assembly model was created to complement with an accurate slave link subassembly, generated based of drawings supplied from the industrial partner, Safran Landing Systems. Second, a Multi-Body Dynamic (MBD) analysis was performed using realistic input motion signals to replicate the dynamic behaviour of the physical system. The third stage involved performing topology optimization with results from the MBD analysis; this can be achieved through the utilization of the Equivalent Static Load Method (ESLM). Lastly, topology results were generated and design interpretation was performed to generate two designs of different approaches. The first design involved trying to closely match the topology results and resulted in a design with an overall weight savings of 67%, peak stress increase of 74%, and no apparent cost savings due to complex features. The second design focused on manufacturability and achieved overall weight saving of 36%, peak stress increase of 6%, and an estimated 60% in cost savings.
Journal Article