Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
816 result(s) for "Language Development Disorders - physiopathology"
Sort by:
Cerebral Asymmetry and Language Development: Cause, Correlate, or Consequence?
In most people, language is processed predominantly by the left hemisphere of the brain, but we do not know how or why. A popular view is that developmental language disorders result from a poorly lateralized brain, but until recently, evidence has been weak and indirect. Modern neuroimaging methods have made it possible to study normal and abnormal development of lateralized function in the developing brain and have confirmed links with language and literacy impairments. However, there is little evidence that weak cerebral lateralization has common genetic origins with language and literacy impairments. Our understanding of the association between atypical language lateralization and developmental disorders may benefit if we reconceptualize the nature of cerebral asymmetry to recognize its multidimensionality and consider variation in lateralization over developmental time. Contrary to popular belief, cerebral lateralization may not be a highly heritable, stable characteristic of individuals; rather, weak lateralization may be a consequence of impaired language learning.
Automated vocal analysis of naturalistic recordings from children with autism, language delay, and typical development
For generations the study of vocal development and its role in language has been conducted laboriously, with human transcribers and analysts coding and taking measurements from small recorded samples. Our research illustrates a method to obtain measures of early speech development through automated analysis of massive quantities of day-long audio recordings collected naturalistically in children's homes. A primary goal is to provide insights into the development of infant control over infrastructural characteristics of speech through large-scale statistical analysis of strategically selected acoustic parameters. In pursuit of this goal we have discovered that the first automated approach we implemented is not only able to track children's development on acoustic parameters known to play key roles in speech, but also is able to differentiate vocalizations from typically developing children and children with autism or language delay. The method is totally automated, with no human intervention, allowing efficient sampling and analysis at unprecedented scales. The work shows the potential to fundamentally enhance research in vocal development and to add a fully objective measure to the battery used to detect speech-related disorders in early childhood. Thus, automated analysis should soon be able to contribute to screening and diagnosis procedures for early disorders, and more generally, the findings suggest fundamental methods for the study of language in natural environments.
Differential Associations Between Sensory Response Patterns and Language, Social, and Communication Measures in Children With Autism or Other Developmental Disabilities
Purpose: To examine patterns of sensory responsiveness (i.e., hyperresponsiveness, hyporesponsiveness, and sensory seeking) as factors that may account for variability in social-communicative symptoms of autism and variability in language, social, and communication skill development in children with autism or other developmental disabilities (DDs). Method: Children with autistic disorder (AD; n = 72, mean age = 52.3 months) and other DDs (n = 44, mean age = 48.1 months) participated in a protocol measuring sensory response patterns; social-communicative symptoms of autism; and language, social, and communication skills. Results: Hyporesponsiveness was positively associated with social-communicative symptom severity, with no significant group difference in the association. Hyperresponsiveness was not significantly associated with social-communicative symptom severity. A group difference emerged for sensory seeking and social-communicative symptom severity, with a positive association for the AD group only. For the 2 groups of children combined, hyporesponsiveness was negatively associated with language skills and social adaptive skills. Sensory seeking also was negatively associated with language skills. These associations did not differ between the 2 groups. Conclusions: Aberrant sensory processing may play an important role in the pathogenesis of autism and other DDs as well as in the rate of acquisition of language, social, and communication skills.
Neuromagnetic Oscillations Predict Evoked-Response Latency Delays and Core Language Deficits in Autism Spectrum Disorders
Previous studies have observed evoked response latency as well as gamma band superior temporal gyrus (STG) auditory abnormalities in individuals with autism spectrum disorders (ASD). A limitation of these studies is that associations between these two abnormalities, as well as the full extent of oscillatory phenomena in ASD in terms of frequency and time, have not been examined. Subjects were presented pure tones at 200, 300, 500, and 1,000 Hz while magnetoencephalography assessed activity in STG auditory areas in a sample of 105 children with ASD and 36 typically developing controls (TD). Findings revealed a profile such that auditory STG processes in ASD were characterized by pre-stimulus abnormalities across multiple frequencies, then early high-frequency abnormalities followed by low-frequency abnormalities. Increased pre-stimulus activity was a ‘core’ abnormality, with pre-stimulus activity predicting post-stimulus neural abnormalities, group membership, and clinical symptoms (CELF-4 Core Language Index). Deficits in synaptic integration in the auditory cortex are associated with oscillatory abnormalities in ASD as well as patient symptoms. Increased pre-stimulus activity in ASD likely demonstrates a fundamental signal-to-noise deficit in individuals with ASD, with elevations in oscillatory activity suggesting an inability to maintain an appropriate ‘neural tone’ and an inability to rapidly return to a resting state prior to the next stimulus.
The P-chain: relating sentence production and its disorders to comprehension and acquisition
This article introduces the P-chain, an emerging framework for theory in psycholinguistics that unifies research on comprehension, production and acquisition. The framework proposes that language processing involves incremental prediction, which is carried out by the production system. Prediction necessarily leads to prediction error, which drives learning, including both adaptive adjustment to the mature language processing system as well as language acquisition. To illustrate the P-chain, we review the Dual-path model of sentence production, a connectionist model that explains structural priming in production and a number of facts about language acquisition. The potential of this and related models for explaining acquired and developmental disorders of sentence production is discussed.
Pathogenic variants in USP7 cause a neurodevelopmental disorder with speech delays, altered behavior, and neurologic anomalies
Purpose Haploinsufficiency of USP7 , located at chromosome 16p13.2, has recently been reported in seven individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), autism spectrum disorder (ASD), seizures, and hypogonadism. Further, USP7 was identified to critically incorporate into the MAGEL2-USP7-TRIM27 (MUST), such that pathogenic variants in USP7 lead to altered endosomal F-actin polymerization and dysregulated protein recycling. Methods We report 16 newly identified individuals with heterozygous USP7 variants, identified by genome or exome sequencing or by chromosome microarray analysis. Clinical features were evaluated by review of medical records. Additional clinical information was obtained on the seven previously reported individuals to fully elucidate the phenotypic expression associated with USP7 haploinsufficiency. Results The clinical manifestations of these 23 individuals suggest a syndrome characterized by DD/ID, hypotonia, eye anomalies,feeding difficulties, GERD, behavioral anomalies, and ASD, and more specific phenotypes of speech delays including a nonverbal phenotype and abnormal brain magnetic resonance image findings including white matter changes based on neuroradiologic examination. Conclusion The consistency of clinical features among all individuals presented regardless of de novo USP7 variant type supports haploinsufficiency as a mechanism for pathogenesis and refines the clinical impact faced by affected individuals and caregivers.
Auditory-Motor Mapping Training: Comparing the Effects of a Novel Speech Treatment to a Control Treatment for Minimally Verbal Children with Autism
This study compared Auditory-Motor Mapping Training (AMMT), an intonation-based treatment for facilitating spoken language in minimally verbal children with autism spectrum disorder (ASD), to a matched control treatment, Speech Repetition Therapy (SRT). 23 minimally verbal children with ASD (20 male, mean age 6;5) received at least 25 sessions of AMMT. Seven (all male) were matched on age and verbal ability to seven participants (five male) who received SRT. Outcome measures were Percent Syllables Approximated, Percent Consonants Correct (of 86), and Percent Vowels Correct (of 61) produced on two sets of 15 bisyllabic stimuli. All subjects were assessed on these measures several times at baseline and after 10, 15, 20, and 25 sessions. The post-25 session assessment timepoint, common to all participants, was compared to Best Baseline performance. Overall, after 25 sessions, AMMT participants increased by 19.4% Syllables Approximated, 13.8% Consonants Correct, and19.1% Vowels Correct, compared to Best Baseline. In the matched AMMT-SRT group, after 25 sessions, AMMT participants produced 29.0% more Syllables Approximated (SRT 3.6%);17.9% more Consonants Correct (SRT 0.5); and 17.6% more Vowels Correct (SRT 0.8%). Chi-square tests showed that significantly more AMMT than SRT participants in both the overall and matched groups improved significantly in number of Syllables Approximated per stimulus and number of Consonants Correct per stimulus. Pre-treatment ability to imitate phonemes, but not chronological age or baseline performance on outcome measures, was significantly correlated with amount of improvement after 25 sessions. Intonation-based therapy may offer a promising new interventional approach for teaching spoken language to minimally verbal children with ASD.
Language in boys with fragile X syndrome
The current paper reports of language production in 15 Hebrew-speaking boys, aged 9;0–13;0, with fully methylated, non-mosaic fragile X syndrome and no concomitant diagnosis of autism. Contrary to expectations, seven children were non-verbal. Language production in the verbal children was studied in free conversations and in context-bound speech. Despite extra caution in calculating MLU, participants' language level was not predicted by mean utterance length. Context bound speech resulted in grammatically more advanced performance than free conversation, and performance in both contexts differed in important ways from performance of typically developing MLU-matched controls. The relevance of MLU as a predictor of productive grammar in disordered populations is briefly discussed.
Language Skill Mediates the Relationship Between Language Load and Articulatory Variability in Children With Language and Speech Sound Disorders
Purpose: The aim of the study was to investigate the relationship between language load and articulatory variability in children with language and speech sound disorders, including childhood apraxia of speech. Method: Forty-six children, ages 48-92 months, participated in the current study, including children with speech sound disorder, developmental language disorder (aka specific language impairment), childhood apraxia of speech, and typical development. Children imitated (low language load task) then retrieved (high language load task) agent + action phrases. Articulatory variability was quantified using speech kinematics. We assessed language status and speech status (typical vs. impaired) in relation to articulatory variability. Results: All children showed increased articulatory variability in the retrieval task compared with the imitation task. However, only children with language impairment showed a disproportionate increase in articulatory variability in the retrieval task relative to peers with typical language skills. Conclusion: Higher-level language processes affect lower-level speech motor control processes, and this relationship appears to be more strongly mediated by language than speech skill.
Language delay aggregates in toddler siblings of children with autism spectrum disorder
Background Language delay is extremely common in children with autism spectrum disorder (ASD), yet it is unclear whether measurable variation in early language is associated with genetic liability for ASD. Assessment of language development in unaffected siblings of children with ASD can inform whether decreased early language ability aggregates with inherited risk for ASD and serves as an ASD endophenotype. Methods We implemented two approaches: (1) a meta-analysis of studies comparing language delay, a categorical indicator of language function, and language scores, a continuous metric, in unaffected toddlers at high and low familial risk for ASD, and (2) a parallel analysis of 350 unaffected 24-month-olds in the Infant Brain Imaging Study (IBIS), a prospective study of infants at high and low familial risk for ASD. An advantage of the former was its detection of group differences from pooled data across unique samples; an advantage of the latter was its sensitivity in quantifying early manifestations of language delay while accounting for covariates within a single large sample. Results Meta-analysis showed that high-risk siblings without ASD (HR-noASD) were three to four times more likely to exhibit language delay versus low-risk siblings without ASD (LR-noASD) and had lower mean receptive and expressive language scores. Analyses of IBIS data corroborated that language delay, specifically receptive language delay, was more frequent in the HR-noASD ( n  = 235) versus LR-noASD group ( n  = 115). IBIS language scores were continuously and unimodally distributed, with a pathological shift towards decreased language function in HR-noASD siblings. The elevated inherited risk for ASD was associated with lower receptive and expressive language scores when controlling for sociodemographic factors. For receptive but not expressive language, the effect of risk group remained significant even when controlling for nonverbal cognition. Conclusions Greater frequency of language delay and a lower distribution of language scores in high-risk, unaffected toddler-aged siblings support decreased early language ability as an endophenotype for ASD, with a more pronounced effect for receptive versus expressive language. Further characterization of language development is warranted to refine genetic investigations of ASD and to elucidate factors influencing the progression of core autistic traits and related symptoms.