Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
62,971
result(s) for
"Language translation"
Sort by:
Multimodal machine translation through visuals and speech
by
Specia, Lucia
,
Sulubacak, Umut
,
Grönroos, Stig-Arne
in
Artificial Intelligence
,
Computational Linguistics
,
Computer Science
2020
Multimodal machine translation involves drawing information from more than one modality, based on the assumption that the additional modalities will contain useful alternative views of the input data. The most prominent tasks in this area are spoken language translation, image-guided translation, and video-guided translation, which exploit audio and visual modalities, respectively. These tasks are distinguished from their monolingual counterparts of speech recognition, image captioning, and video captioning by the requirement of models to generate outputs in a different language. This survey reviews the major data resources for these tasks, the evaluation campaigns concentrated around them, the state of the art in end-to-end and pipeline approaches, and also the challenges in performance evaluation. The paper concludes with a discussion of directions for future research in these areas: the need for more expansive and challenging datasets, for targeted evaluations of model performance, and for multimodality in both the input and output space.
Journal Article
Advances in machine translation for sign language: approaches, limitations, and challenges
by
Hussain, Amir
,
Farooq, Uzma
,
Rahim, Mohd Shafry Mohd
in
Algorithms
,
Artificial Intelligence
,
Avatars
2021
Sign languages are used by the deaf community around the globe to communicate with one another. These are gesture-based languages where a deaf person performs gestures using hands and facial expressions. Every gesture represents a word or a phrase in the natural language. There are more than 200 different sign languages in the world. In order to facilitate the learning of sign languages by the deaf community, researchers have compiled sign language repositories comprising of gestures. Similarly, algorithms have been proposed to translate the natural language into sign language, which is subsequently converted into gestures using avatar technology. On the other hand, several different approaches for gesture recognition have also been proposed in the literature, many of which use specialized hardware. Similarly, cell phone applications have been developed for learning and translation of sign languages. This article presents a systematic literature review of these multidisciplinary aspects of sign language translation. It provides a detailed analysis of carefully selected 147 high-quality research articles and books related to the subject matter. Specifically, it categorizes different approaches used for each component, discusses their theoretical foundations, and provides a comparative analysis of the proposed approaches. Lastly, open research challenges and future directions for each facet of the sign language translation problem have been discussed. To the best of our knowledge, this is the first comprehensive survey on sign language translation that discusses state-of-the-art research from multi-disciplinary perspectives.
Journal Article
From rule-based models to deep learning transformers architectures for natural language processing and sign language translation systems: survey, taxonomy and performance evaluation
2024
With the growing Deaf and Hard of Hearing population worldwide and the persistent shortage of certified sign language interpreters, there is a pressing need for an efficient, signs-driven, integrated end-to-end translation system, from sign to gloss to text and vice-versa. There has been a wealth of research on machine translations and related reviews. However, there are few works on sign language machine translation considering the particularity of the language being continuous and dynamic. This paper aims to address this void, providing a retrospective analysis of the temporal evolution of sign language machine translation algorithms and a taxonomy of the Transformers architectures, the most used approach in language translation. We also present the requirements of a real-time Quality-of-Service sign language machine translation system underpinned by accurate deep learning algorithms. We propose future research directions for sign language translation systems.
Journal Article
Full-Fiber Auxetic-Interlaced Yarn Sensor for Sign-Language Translation Glove Assisted by Artificial Neural Network
2022
HighlightsFull-fiber auxetic-interlaced yarn sensor was fabricated by a continuous and mass-producible computerized wrapping spinning technology.Auxetic-interlaced yarn sensor shows a Poisson’s ratio of − 1.5, a robust mechanical property (0.6 cN/dtex), and a fast train-resistance responsiveness (0.025 s).A novel sign-language translation glove was developed to recognize the full English alphabet and translate the wearer’s sign language to text.Yarn sensors have shown promising application prospects in wearable electronics owing to their shape adaptability, good flexibility, and weavability. However, it is still a critical challenge to develop simultaneously structure stable, fast response, body conformal, mechanical robust yarn sensor using full microfibers in an industrial-scalable manner. Herein, a full-fiber auxetic-interlaced yarn sensor (AIYS) with negative Poisson’s ratio is designed and fabricated using a continuous, mass-producible, structure-programmable, and low-cost spinning technology. Based on the unique microfiber interlaced architecture, AIYS simultaneously achieves a Poisson’s ratio of−1.5, a robust mechanical property (0.6 cN/dtex), and a fast train-resistance responsiveness (0.025 s), which enhances conformality with the human body and quickly transduce human joint bending and/or stretching into electrical signals. Moreover, AIYS shows good flexibility, washability, weavability, and high repeatability. Furtherly, with the AIYS array, an ultrafast full-letter sign-language translation glove is developed using artificial neural network. The sign-language translation glove achieves an accuracy of 99.8% for all letters of the English alphabet within a short time of 0.25 s. Furthermore, owing to excellent full letter-recognition ability, real-time translation of daily dialogues and complex sentences is also demonstrated. The smart glove exhibits a remarkable potential in eliminating the communication barriers between signers and non-signers.
Journal Article
A Survey of Advancements in Real-Time Sign Language Translators: Integration with IoT Technology
by
Fragulis, George F.
,
Papatsimouli, Maria
,
Sarigiannidis, Panos
in
Communication
,
computer vision
,
Deafness
2023
Real-time sign language translation systems are of paramount importance in enabling communication for deaf and hard-of-hearing individuals. This population relies on various communication methods, including sign languages and visual techniques, to interact with others. While assistive technologies, such as hearing aids and captioning, have improved their communication capabilities, a significant communication gap still exists between sign language users and non-users. In order to bridge this gap, numerous sign language translation systems have been developed, encompassing sign language recognition and gesture-based controls. Our research aimed to analyze the advancements in real-time sign language translators developed over the past five years and their integration with IoT technology. By closely examining these technologies, we aimed to attain a deeper comprehension of their practical applications and evolution in the domain of sign language translation. We analyzed the current literature, technical reports, and conference papers on real-time sign language translation systems. Our results offer insights into the current state of the art in real-time sign language translation systems and their integration with IoT technology. We also provide a deep understanding of the recent developments in sign language translation technology and the potential for their fusion with Internet of Things technology to improve communication and promote inclusivity for the deaf and hard-of-hearing population.
Journal Article