Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
14,641 result(s) for "Large-scale"
Sort by:
VLSI Test Principles and Architectures - Design for Testability
This book is a comprehensive guide to new design for testability (DFT) methods that will show the readers how to design a testable and quality product, drive down test cost, improve product quality and yield, and speed up time-to-market and time-to-volume. Key features include up-to-date coverage of design for testability, coverage of industry practices commonly found in commercial DFT tools but not discussed in other books, and numerous, practical examples in each chapter illustrating basic VLSI test principles and DFT architectures. Practitioners/Researchers in VLSI design and testing; design or test engineers, as well as research institutes will benefit from this book. This book is also appropriate for undergraduate and graduate-level courses in electronic testing, digital systems testing, digital logic test and simulation, and VLSI design.
System-on-Chip Test Architectures - Nanometer Design for Testability
Modern electronics testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance-capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI testing and design-for-testability (DFT) techniques that will allow students, researchers, DFT practitioners, and VLSI designers to master quickly system-on-chip test architectures, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs.
Transistors based on two-dimensional materials for future integrated circuits
Field-effect transistors based on two-dimensional (2D) materials have the potential to be used in very large-scale integration (VLSI) technology, but whether they can be used at the front end of line or at the back end of line through monolithic or heterogeneous integration remains to be determined. To achieve this, multiple challenges must be overcome, including reducing the contact resistance, developing stable and controllable doping schemes, advancing mobility engineering and improving high- κ dielectric integration. The large-area growth of uniform 2D layers is also required to ensure low defect density, low device-to-device variation and clean interfaces. Here we review the development of 2D field-effect transistors for use in future VLSI technologies. We consider the key performance indicators for aggressively scaled 2D transistors and discuss how these should be extracted and reported. We also highlight potential applications of 2D transistors in conventional micro/nanoelectronics, neuromorphic computing, advanced sensing, data storage and future interconnect technologies. This Review examines the development of field-effect transistors based on two-dimensional materials and considers the challenges that need to be addressed for the devices to be incorporated into very large-scale integration (VLSI) technology.
Broadband circuits for optical fiber communication
An expert guide to the new and emerging field of broadband circuits for optical fiber communication This exciting publication makes it easy for readers to enter into and deepen their knowledge of the new and emerging field of broadband circuits for optical fiber communication. The author's selection and organization of material have been developed, tested, and refined from his many industry courses and seminars. Five types of broadband circuits are discussed in detail: * Transimpedance amplifiers * Limiting amplifiers * Automatic gain control (AGC) amplifiers * Lasers drivers * Modulator drivers Essential background on optical fiber, photodetectors, lasers, modulators, and receiver theory is presented to help readers understand the system environment in which these broadband circuits operate. For each circuit type, the main specifications and their impact on system performance are explained and illustrated with numerical values. Next, the circuit concepts are discussed and illustrated with practical implementations. A broad range of circuits in MESFET, HFET, BJT, HBT, BiCMOS, and CMOS technologies is covered. Emphasis is on circuits for digital, continuous-mode transmission in the 2.5 to 40 Gb/s range, typically used in SONET, SDH, and Gigabit Ethernet applications. Burst-mode circuits for passive optical networks (PON) and analog circuits for hybrid fiber-coax (HFC) cable-TV applications also are discussed. Learning aids are provided throughout the text to help readers grasp and apply difficult concepts and techniques, including: * Chapter summaries that highlight the key points * Problem-and-answer sections to help readers apply their new knowledge * Research directions that point to exciting new technological breakthroughs on the horizon * Product examples that show the performance of actual broadband circuits * Appendices that cover eye diagrams, differential circuits, S parameters, transistors, and technologies * A bibliography that leads readers to more complete and in-depth treatment of specialized topics This is a superior learning tool for upper-level undergraduates and graduate-level students in circuit design and optical fiber communication. Unlike other texts that concentrate on analog circuits in general or mostly on optics, this text provides balanced coverage of electronic, optic, and system issues. Professionals in the fiber optic industry will find it an excellent reference, incorporating the latest technology and discoveries in the industry.
Diagnostics and correction of batch effects in large‐scale proteomic studies: a tutorial
Advancements in mass spectrometry‐based proteomics have enabled experiments encompassing hundreds of samples. While these large sample sets deliver much‐needed statistical power, handling them introduces technical variability known as batch effects. Here, we present a step‐by‐step protocol for the assessment, normalization, and batch correction of proteomic data. We review established methodologies from related fields and describe solutions specific to proteomic challenges, such as ion intensity drift and missing values in quantitative feature matrices. Finally, we compile a set of techniques that enable control of batch effect adjustment quality. We provide an R package, \"proBatch\", containing functions required for each step of the protocol. We demonstrate the utility of this methodology on five proteomic datasets each encompassing hundreds of samples and consisting of multiple experimental designs. In conclusion, we provide guidelines and tools to make the extraction of true biological signal from large proteomic studies more robust and transparent, ultimately facilitating reliable and reproducible research in clinical proteomics and systems biology. Graphical Abstract In mass spectrometry‐based proteomics, handling large sample sets introduces technical variability known as batch effects. This tutorial provides guidelines and tools for the assessment, normalization, and batch correction of proteomics data.
Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize
Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.
Characteristics and atmospheric drivers of large‐scale agrometeorologically relevant dry spells in sub‐seasonal to seasonal timescales over Zimbabwe
This article pioneers a unique approach to examining generic dry spells, shifting focus from traditional rain‐free period analysis to a crop‐centric perspective that integrates an anticipatory lens inspired by Impact‐based Forecasting (IbF). Moving beyond traditional analyses of rain‐free periods, the article evaluates these impactful within‐season large‐scale agrometeorologically relevant dry spells (LARDS) not by the number of days with minimal or no rainfall but by their impact—specifically, the adequacy of root‐zone soil moisture to meet the optimal requirements of maize crops, as quantified through the Water Requirement Satisfaction Index (WRSI). LARDS were identified in maize‐intensive growing regions of Zimbabwe under two maize planting date scenarios: meteorology‐guided and uninformed. The research characterizes impactful within‐season LARDS occurring at sub‐seasonal to seasonal timescales over 36 years (1983–2018). Findings show that meteorological guidance improves yields while neglecting it results in lower yields. During LARDS, a distinct northwest‐to‐southeast suppressed rainfall pattern emerges over Zimbabwe, extending into neighbouring countries. This pattern is associated with a southwestward or northeastward displacement of Tropical Temperate Troughs (the regional primary rainfall system) relative to the country's location. Furthermore, LARDS exhibit overarching anticyclonic conditions impeding vertical cloud development with notable changes in the key local large‐scale mean climatic features influencing Southern Africa's weather. Specifically, the Mozambique Channel Trough, Angola Tropical Low, Saint Helena High and Mascarene High weaken anomalously, while the Botswana High strengthens during LARDS. Additionally, we demonstrate that LARDS have a northeastward propagation and have atmospheric signatures indicative of being triggered by upstream Rossby waves originating from the south coast of South America. This study presents a crop‐centric approach to analysing dry spell impacts, using the Water Requirement Satisfaction Index (WRSI). Leveraging this metric, it further identifies and characterizes large‐scale agrometeorologically relevant dry spells (LARDS) in Zimbabwe. The study's findings demonstrate that meteorological guidance enhances yield and link LARDS to suppressed rainfall, weakened climatic systems (Mozambique Channel Trough, Angola Tropical Low, Saint Helena High and Mascarene High) and a strengthened Botswana High.
Profiling of Accessible Chromatin Regions across Multiple Plant Species and Cell Types Reveals Common Gene Regulatory Principles and New Control Modules
The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species.We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell-type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell-type-specific transcriptomes during development.