Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
549 result(s) for "Large-scale production"
Sort by:
A potent neutralizing nanobody against SARS‐CoV‐2 with inhaled delivery potential
The coronavirus disease 2019 (COVID‐19) pandemic has become a serious burden on global public health. Although therapeutic drugs against COVID‐19 have been used in many countries, their efficacy is still limited. We here reported nanobody (Nb) phage display libraries derived from four camels immunized with the SARS‐CoV‐2 spike receptor‐binding domain (RBD), from which 381 Nbs were identified to recognize SARS‐CoV‐2‐RBD. Furthermore, seven Nbs were shown to block interaction of human angiotensin‐converting enzyme 2 (ACE2) with SARS‐CoV‐2‐RBD variants and two Nbs blocked the interaction of human ACE2 with bat‐SL‐CoV‐WIV1‐RBD and SARS‐CoV‐1‐RBD. Among these candidates, Nb11‐59 exhibited the highest activity against authentic SARS‐CoV‐2 with 50% neutralizing dose (ND50) of 0.55 μg/ml. Nb11‐59 can be produced on large scale in Pichia pastoris, with 20 g/L titer and 99.36% purity. It also showed good stability profile, and nebulization did not impact its stability. Overall, Nb11‐59 might be a promising prophylactic and therapeutic molecule against COVID‐19, especially through inhalation delivery. We reported nanobody (Nb) phage display libraries derived from four camels immunized with the SARS‐CoV‐2 spike receptor‐binding domain (RBD), from which 381 Nbs were identified to recognize SARS‐CoV‐2‐RBD including several mutants. Nb11‐59 exhibited potent antiviral activity against authentic SARS‐CoV‐2 with 50% neutralizing dose (ND50) of 0.55 μg/ml, and it can be produced on large scale in Pichia pastoris with titers reached 20 g/L. Importantly, Nb11‐59 showed a good stability and could be developed as an inhaled drug to treat COVID‐19.
Large‐scale production of extracellular vesicles: Report on the “massivEVs” ISEV workshop
Extracellular vesicles (EVs) large‐scale production is a crucial point for the translation of EVs from discovery to application of EV‐based products. In October 2021, the International Society for Extracellular Vesicles (ISEV), along with support by the FET‐OPEN projects, “The Extracellular Vesicle Foundry” (evFOUNDRY) and “Extracellular vesicles from a natural source for tailor‐made nanomaterials” (VES4US), organized a workshop entitled “massivEVs” to discuss the potential challenges for translation of EV‐based products. This report gives an overview of the topics discussed during “massivEVs”, the most important points raised, and the points of consensus reached after discussion among academia and industry representatives. Overall, the review of the existing EV manufacturing, upscaling challenges and directions for their resolution highlighted in the workshop painted an optimistic future for the expanding EV field.
Scalable Matrigel‐Free Suspension Culture for Generating High‐Quality Human Liver Ductal Organoids
Liver transplantation is currently the sole definitive treatment option for end‐stage liver failure. However, a significant shortage of donors prevails due to high clinical demands. Recently, human liver organoids have shown significant potential in regenerative medicine for liver diseases. Nevertheless, current static cultures of organoids grown in well‐plates heavily rely on extracellular matrix hydrogels (Matrigel), thereby limiting both the scalability and quantity of organoid culture. In this study, we present a groundbreaking culture mode that eliminates all reliance on extracellular matrix hydrogels, enabling the successful preparation of functional human liver ductal organoids (LDOs) based on the cell suspension culture mode in a mechanically stirred bioreactor. Initially, the developed suspension culture in a 6‐well plate without matrigel was proven to support robust growth of liver ductal organoids with an average size 2.6 times larger than those obtained in static culture, and with a high organoid survival rate exceeding 90%. Also, the transcriptome profile reveals that suspension culture activates the phosphatidylinositol 3‐kinase (PI3K) signalling pathway through mechanical signal transduction, thereby promoting hepatobiliary characteristics. Then, a controllable and scalable bioprocess for liver ductal organoid culture was developed and successfully scaled up to a 50 mL flask bioreactor with a working volume of 15 mL. Finally, animal experiments indicated that the transplantation of liver ductal organoids harvested from suspension culture can effectively alleviate liver injury and inflammation, demonstrating the feasibility of large‐scale production of liver ductal organoids cultivated in suspension culture with an improved extracellular matrix environment. A novel matrigel‐free suspension culture enhances the generation of high‐quality human liver ductal organoids, which shows remarkable efficacy in mice transplantation.
A Review on Recent Progress in the Integrated Green Hydrogen Production Processes
The thermochemical water-splitting method is a promising technology for efficiently converting renewable thermal energy sources into green hydrogen. This technique is primarily based on recirculating an active material, capable of experiencing multiple reduction-oxidation (redox) steps through an integrated cycle to convert water into separate streams of hydrogen and oxygen. The thermochemical cycles are divided into two main categories according to their operating temperatures, namely low-temperature cycles (<1100 °C) and high-temperature cycles (<1100 °C). The copper chlorine cycle offers relatively higher efficiency and lower costs for hydrogen production among the low-temperature processes. In contrast, the zinc oxide and ferrite cycles show great potential for developing large-scale high-temperature cycles. Although, several challenges, such as energy storage capacity, durability, cost-effectiveness, etc., should be addressed before scaling up these technologies into commercial plants for hydrogen production. This review critically examines various aspects of the most promising thermochemical water-splitting cycles, with a particular focus on their capabilities to produce green hydrogen with high performance, redox pairs stability, and the technology maturity and readiness for commercial use.
Microbead Encapsulation Strategy for Efficient Production of Extracellular Vesicles Derived From Human Mesenchymal Stem Cells
Human mesenchymal stem cell‐derived extracellular vesicles (hMSC‐EVs) have shown great potential in tissue repair and regeneration. However, their scalable production and functional quality are still limited by current expansion technologies. In this study, we propose a production technology for hMSC‐EVs based on three‐dimensional (3D) microbead culture, which enhances the secretory behaviour of hMSC. Fixed number of MSCs were encapsulated in Matrigel at appropriate densities and printed into 3D microbeads by the custom automated microfluidic bead‐jet printing technique. Compared with 2D culture group, EVs derived from 3D hMSC microbead had smaller size and increased yield by 20‐fold, and the actin depolymerisation of the cell may be an important mechanism for enhancing EV secretion. Further analysis confirmed that the EVs derived from 3D hMSC microbead exhibited enhanced angiogenic and proliferative capabilities, which promoted the viability and tube‐forming capacity of human umbilical vein endothelial cells (HUVEC). In conclusion, this automated microfluidic microbead encapsulation technology increased the yield and therapeutic effect of hMSC‐EVs and provides a platform for scalable EV production of regenerative therapies.
Manufacture and Quality Control of Human Umbilical Cord-Derived Mesenchymal Stem Cell Sheets for Clinical Use
Human umbilical cord-derived mesenchymal stem cell (UC−MSC) sheets have attracted much attention in cell therapy. However, the culture media and coating matrix used for the preparation of UC−MSC sheets have not been safe enough to comply with current clinical drug standards. Moreover, the UC−MSC sheet preservation systems developed before did not comply with Good Manufacturing Practice (GMP) regulations. In this study, the culture medium and coating matrix were developed for UC−MSC sheet production to comply with clinical drug standards. Additionally, the GMP-compliant preservation solution and method for the UC−MSC sheet were developed. Then, quality standards of the UC−MSC sheet were formulated according to national and international regulations for drugs. Finally, the production process of UC−MSC sheets on a large scale was standardized, and three batches of trial production were conducted and tested to meet the established quality standards. This research provides the possibility for clinical trials of UC−MSC sheet products in the development stage of new drugs and lays the foundation for industrial large-scale production after the new drug is launched.
Mass‐produced gram‐negative bacterial outer membrane vesicles activate cancer antigen‐specific stem‐like CD8+ T cells which enables an effective combination immunotherapy with anti‐PD‐1
Despite the capability of extracellular vesicles (EVs) derived from Gram‐negative and Gram‐positive bacteria to induce potent anti‐tumour responses, large‐scale production of bacterial EVs remains as a hurdle for their development as novel cancer immunotherapeutic agents. Here, we developed manufacturing processes for mass production of Escherichia coli EVs, namely, outer membrane vesicles (OMVs). By combining metal precipitation and size‐exclusion chromatography, we isolated 357 mg in total protein amount of E. coli OMVs, which was equivalent to 3.93 × 1015 particles (1.10 × 1010 particles/μg in total protein amounts of OMVs) from 160 L of the conditioned medium. We show that these mass‐produced E. coli OMVs led to complete remission of two mouse syngeneic tumour models. Further analysis of tumour microenvironment in neoantigen‐expressing tumour models revealed that E. coli OMV treatment causes increased infiltration and activation of CD8+ T cells, especially those of cancer antigen‐specific CD8+ T cells with high expression of TCF‐1 and PD‐1. Furthermore, E. coli OMVs showed synergistic anti‐tumour activity with anti‐PD‐1 antibody immunotherapy, inducing substantial tumour growth inhibition and infiltration of activated cancer antigen‐specific stem‐like CD8+ T cells into the tumour microenvironment. These data highlight the potent anti‐tumour activities of mass‐produced E. coli OMVs as a novel candidate for developing next‐generation cancer immunotherapeutic agents.
Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications
Prebiotics are a group of nutrients that are degraded by gut microbiota. Their relationship with human overall health has been an area of increasing interest in recent years. They can feed the intestinal microbiota, and their degradation products are short-chain fatty acids that are released into blood circulation, consequently, affecting not only the gastrointestinal tracts but also other distant organs. Fructo-oligosaccharides and galacto-oligosaccharides are the two important groups of prebiotics with beneficial effects on human health. Since low quantities of fructo-oligosaccharides and galacto-oligosaccharides naturally exist in foods, scientists are attempting to produce prebiotics on an industrial scale. Considering the health benefits of prebiotics and their safety, as well as their production and storage advantages compared to probiotics, they seem to be fascinating candidates for promoting human health condition as a replacement or in association with probiotics. This review discusses different aspects of prebiotics, including their crucial role in human well-being.
Lipid Nanoparticles for Drug Delivery
Lipid nanoparticles have attracted significant interests in the last two decades, and have achieved tremendous clinical success since the first clinical approval of Doxil in 1995. At the same time, lipid nanoparticles have also demonstrated enormous potential in delivering nucleic acid drugs as evidenced by the approval of two RNA therapies and mRNA COVID‐19 vaccines. In this review, an overview on different classes of lipid nanoparticles, including liposomes, solid lipid nanoparticles, and nanostructured lipid carriers, is first provided, followed by the introduction of their preparation methods. Then the characterizations of lipid nanoparticles are briefly reviewed and their applications in encapsulating and delivering hydrophobic drugs, hydrophilic drugs, and RNAs are highlighted. Finally, various applications of lipid nanoparticles for overcoming different delivery challenges, including crossing the blood–brain barrier, targeted delivery, and various routes of administration, are summarized. Lipid nanoparticles as drug delivery systems offer many attractive benefits such as great biocompatibility, ease of preparation, feasibility of scale‐up, nontoxicity, and targeted delivery, while current challenges in drug delivery warrant future studies about structure–function correlations, large‐scale production, and targeted delivery to realize the full potential of lipid nanoparticles for wider clinical and pharmaceutical applications in future. This article reviews the classification of different lipid nanoparticles, and their preparation and characterization. Their applications in encapsulating and delivering hydrophobic drugs, hydrophilic drugs, and RNAs for different diseases and how lipid nanoparticles enable nanomedicine to address the challenges of blood–brain barrier, targeted delivery, and various routes of administration are also discussed .
Large-Scale Production of Lentiviral Vectors: Current Perspectives and Challenges
Lentiviral vectors (LVs) have gained value over recent years as gene carriers in gene therapy. These viral vectors are safer than what was previously being used for gene transfer and are capable of infecting both dividing and nondividing cells with a long-term expression. This characteristic makes LVs ideal for clinical research, as has been demonstrated with the approval of lentivirus-based gene therapies from the Food and Drug Administration and the European Agency for Medicine. A large number of functional lentiviral particles are required for clinical trials, and large-scale production has been challenging. Therefore, efforts are focused on solving the drawbacks associated with the production and purification of LVsunder current good manufacturing practice. In recent years, we have witnessed the development and optimization of new protocols, packaging cell lines, and culture devices that are very close to reaching the target production level. Here, we review the most recent, efficient, and promising methods for the clinical-scale production ofLVs.