Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Late‐LTP"
Sort by:
Age‐related changes in hippocampal‐dependent synaptic plasticity and memory mediated by p75 neurotrophin receptor
The plasticity mechanisms in the nervous system that are important for learning and memory are greatly impacted during aging. Notably, hippocampal‐dependent long‐term plasticity and its associative plasticity, such as synaptic tagging and capture (STC), show considerable age‐related decline. The p75 neurotrophin receptor (p75NTR) is a negative regulator of structural and functional plasticity in the brain and thus represents a potential candidate to mediate age‐related alterations. However, the mechanisms by which p75NTR affects synaptic plasticity of aged neuronal networks and ultimately contribute to deficits in cognitive function have not been well characterized. Here, we report that mutant mice lacking the p75NTR were resistant to age‐associated changes in long‐term plasticity, associative plasticity, and associative memory. Our study shows that p75NTR is responsible for age‐dependent disruption of hippocampal homeostatic plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA‐ROCK2‐LIMK1‐cofilin. p75NTR may thus represent an important therapeutic target for limiting the age‐related memory and cognitive function deficits. This cartoon depicts the signaling pathway by p75NTR in mediating synaptic plasticity changes in aging. Aging increases proBDNF without affecting mature BDNF. ProBDNF has been implicated in facilitating LTD. Aging also modulates MAPK pathway by upregulating p38 activity while downregulating ERK1/2 activity. Both p38 and ERK1/2 pathways are important in regulating Arc gene transcription. Aging decreases Arc protein, thus affecting the maintenance of LTP and LTM consolidation through regulation of actin dynamics. In addition, aging increases RhoA level leading to an increase in ROCK2 activity. This reduces both LIMK1 and cofilin phosphorylation. Modulation of cofilin activity is essential for the reorganization of the actin cytoskeleton and influences synaptic plasticity. As a whole, p75NTR is responsible for the age‐mediated disruption of hippocampal homeostatic long‐term plasticity by modulating several signaling pathways, including BDNF, MAPK, Arc, and RhoA‐ROCK2‐LIMK1‐cofilin, leading to deficits in STC and associative memory. Red arrow indicates increases. Green arrow indicates decreases. Orange equals sign indicates no change.
Stimulation of protein synthesis by optogenetic and chemical induction of excitatory synaptic plasticity in hippocampal somatostatin interneurons
Somatostatin-expressing interneurons (SOM-INs) are a major subpopulation of GABAergic cells in CA1 hippocampus that receive excitation from pyramidal cells (PCs) and provide feedback control of synaptic inputs onto PC dendrites. Excitatory synapses from PCs onto SOM-INs (PC-SOM synapses) exhibit long-term potentiation (LTP) mediated by type 1a metabotropic glutamate receptors (mGluR1a). LTP at PC-SOM synapses translates in lasting regulation of metaplasticity of entorhinal and CA3 synaptic inputs on PCs and contributes to hippocampus-dependent learning. A persistent form of PC-SOM synapse LTP lasting hours is prevented by blockers of transcription and translation, and a more transient form of PC-SOM synapse LTP lasting tens of minutes requires mTORC1-signaling, suggesting an involvement of protein synthesis. However, the role of protein synthesis in these forms of plasticity has not been directly demonstrated. Here we use the SUrface SEnsing of Translation (SUnSET) assay of protein synthesis to directly show that the induction protocols for both forms of LTP at PC-SOM synapses stimulate protein synthesis in SOM-INs. Moreover, protein synthesis stimulated by persistent LTP induction was prevented in mice with a SOM-IN conditional knock-out of Raptor, an essential component of mTORC1, indicating a critical role of mTORC1 in the control of translation in PC-SOM synapse plasticity. Moreover, protein synthesis induced by both forms of LTP may share common mechanisms as transient LTP induction occluded further stimulation of protein synthesis by persistent LTP induction. Our findings highlight a crucial role of protein synthesis and its control by mTORC1 in SOM-INs that is important for hippocampus-dependent memory function.
mRNA binding protein staufen 1-dependent regulation of pyramidal cell spine morphology via NMDA receptor-mediated synaptic plasticity
Staufens (Stau) are RNA-binding proteins involved in mRNA transport, localization, decay and translational control. The Staufen 1 (Stau1) isoform was recently identified as necessary for the protein synthesis-dependent late phase long-term potentiation (late-LTP) and for the maintenance of mature dendritic spines and synaptic activity in hippocampal CA1 pyramidal cells, strongly suggesting a role of mRNA regulation by Stau1 in these processes. However, the causal relationship between these impairments in synaptic function (spine shape and basal synaptic activity) and plasticity (late-LTP) remains unclear. Here, we determine that the effects of Stau1 knockdown on spine shape and size are mimicked by blocking NMDA receptors (or elevating extracellular Mg 2+ ) and that Stau1 knockdown in the presence of NMDA receptor blockade (or high Mg 2+ ) has no further effect on spine shape and size. Moreover, the effect of Stau1 knockdown on late-LTP cannot be explained by these effects, since when tested in normal medium, slice cultures that had been treated with high Mg 2+ (to impair NMDA receptor function) in combination with a control siRNA still exhibited late-LTP, while siRNA to Stau1 was still effective in blocking late-LTP. Our results indicate that Stau1 involvement in spine morphogenesis is dependent on ongoing NMDA receptor-mediated plasticity, but its effects on late-LTP are independent of these changes. These findings clarify the role of Stau1-dependent mRNA regulation in physiological and morphological changes underlying long-term synaptic plasticity in pyramidal cells.
Emotional and cognitive reinforcement of rat hippocampal long-term potentiation by different learning paradigms
In earlier studies we have shown that a protein-synthesis-independent, early, long-term potentiaton (early-LTP) that lasts up to 4–5 hours can be transformed (reinforced) into a protein-synthesis-dependent late-LTP that lasts ≥8 hours by either an emotional challenge (e.g. swim stress) or mastering a cognitive task (e.g. spatial learning). In the present study we show that LTP-reinforcement by spatial training depends on the specific constraints of the learning paradigm. In a holeboard paradigm, LTP-reinforcement is related to the formation of a lasting reference memory whereas water-maze training gives more heterogenous results. Thus, cognitive aspects interfere with emotionally challenging components of the latter paradigm. These data indicate that different spatial-learning tasks are weighted distinctly by the animal. Thus, we show that aspects of specific spatial-learning paradigms such as shifts of attention and emotional content directly influence functional plasticity and memory formation.