Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
483 result(s) for "Late quaternary"
Sort by:
LATE QUATERNARY ACTIVITY OF THE HARAMACHI SEGMENT OF THE FUTABA FAULT IN NORTHEAST JAPAN THROUGH TOPOGRAPHIC ANAGLYPH IMAGES AND BOREHOLE CORE SEDIMENT ANALYSIS
The Haramachi Fault segment in the northeastern part of Honshu Island, Japan, has mainly sinistral fault movements with minor reverse component within the Futaba Fault Zone in the northeastern Japan arc. The 2011 Mw 9.0 earthquake occurred off the Pacific coast of Tohoku which caused large crustal deformations. Despite being the closest active fault to the epicenter, very limited investigation has been conducted on the Futaba Fault Zone. Previous studies used smaller scale topographic maps and fault activity was estimated only from trenching and borehole investigations in the central part of the Haramachi Fault segment. Thus, geometry, kinematic, and recent tectonic activity of the fault segment is not well identified, especially in northern part. In this study, we use a combination of high-resolution DEMs (2-m and 5-m mesh), several types of topographic anaglyph images (slope, negative and positive openness), and conducted field survey to confirm remote sensing interpretation. Subtle surface expression of deformation associated with active faulting, such as deformed terrace risers, deflected drainages, and small fault scarps can now be identified more clearly. Several new fault strands in the northern part of the segment were found supported by fault outcrops found in the field confirming the recent activity of the fault system. The new estimation of the total length of the Haramachi segment produced from the approach of this study yields 25 km, which is capable of producing Mw 6.5 – 7.0 or Mjma 7.2 earthquakes if ruptures were to occur altogether in the future. Moreover, a shallow borehole survey and radiocarbon dating from the soil organic material has revealed the minimal timing estimation of the most recent faulting in the Haramachi segment to be 3694 ± 24 BP. This research provides a revised understanding of active fault distribution and deformation associated with the Haramachi segment and validates the timing of the most recent faulting event more broadly.
Range shifts in response to past and future climate change: Can climate velocities and species' dispersal capabilities explain variation in mammalian range shifts?
Aim: Range shift is a relatively well-understood response to climate change, but our ability to predict shifts is limited. Two factors that may cause variation in range shifts across species are dispersal ability and varying rates of climate change through time and across space. Here, we assess patterns of range shifts during the late Quaternary and estimate how the velocity of climate change and the dispersal ability of a species affect the magnitude of species range shifts in response to climate change. Location: North America. Methods: We hindcast species distribution models for 122 North American mammals to five times over the past 17,000 years and forecast them to two future times given two emissions scenarios. Generalized additive models were constructed to quantify the importance of dispersal ability and the velocity of temperature and precipitation in determining the magnitude of range shift expected for individual species. Results: Hindcasted and forecasted ranges demonstrate the variety of responses to climate change. In general, species shifted their ranges in a northerly direction (NW, N, NE) regardless of the type of climate change (i.e., warming vs. cooling). The highest rates of range shifts during the past occurred during periods of relatively rapid climate change (Last Glacial Maximum/Bølling-Allerød and Bølling-Allerød/Younger Dryas transitions). Rates of range shifts for the future are projected to be significantly higher than any of the past intervals. The velocity of climate change is significantly associated with the magnitude of range shifts during climate transitions that occur over longer time-scales, while maximum dispersal distance is important during periods of rapid climate change. Main Conclusions: Our results suggest that both the dispersal ability and the velocity of climate change are significantly associated with species' range shifts. However, the importance of these two factors is context-dependent and depends on the interaction of the rate of climate change and the length of time over which the change occurs.
Ostrich eggshell bead strontium isotopes reveal persistent macroscale social networking across late Quaternary southern Africa
Hunter-gatherer exchange networks dampen subsistence and reproductive risks by building relationships of mutual support outside local groups that are underwritten by symbolic gift exchange. Hxaro, the system of delayed reciprocity between Ju/’hoãn individuals in southern Africa’s Kalahari Desert, is the best-known such example and the basis for most analogies and models of hunter-gatherer exchange in prehistory. However, its antiquity, drivers, and development remain unclear, as they do for long-distance exchanges among African foragers more broadly. Here we show through strontium isotope analyses of ostrich eggshell beads from highland Lesotho, and associated strontium isoscape development, that such practices stretch back into the late Middle Stone Age. We argue that these exchange items originated beyond the macroband from groups occupying the more water-stressed subcontinental interior. Tracking the emergence and persistence of macroscale, transbiome social networks helps illuminate the evolution of social strategies needed to thrive in stochastic environments, strategies that in our case study show persistence over more than 33,000 y.
A Determination Key for Modern Dinoflagellate Cysts
The first online modern organic-walled dinoflagellate cyst determination key has been launched at www.marum.de/dinocystkey.html. This key is based on easily recognisable morphological features of dinoflagellate cysts that can be observed using standard transmitted light microscopy. To date, the key includes 96 cyst species that can be found in late Quaternary marine sediments. This key is free of charge to users, and will be continuously updated and improved by the authors. For each individual species of dinoflagellate cyst, the website provides information on its defining morphological characteristics and the cyst—motile stage relationship. It gives a comparison with other morphologically similar taxa, links to publications with original cyst descriptions and outlines their modern global distribution where this information is available. All species descriptions are illustrated by line drawings showing their most distinctive characteristics, and accompanied by high-quality bright-field photomicrographs. The key is compatible with all major computing platforms (including smartphones) and software.
Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts
Mammalian frugivores are critical seed dispersers, but many are under threat of extinction. Futhermore, the impact of past and future defaunation on plant assemblages has yet to be quantified at the global scale. Here, we integrate palm and mammalian frugivore trait and occurrence data and reveal a global positive relationship between fruit size and frugivore body size. Global variation in fruit size is better explained by present-day frugivore assemblages than by Late Pleistocene assemblages, suggesting ecological and evolutionary reorganization after end-Pleistocene extinctions, except in the Neotropics, where some large-fruited palm species may have outlived their main seed dispersers by thousands of years. Our simulations of frugivore extinction over the next 100 years suggest that the impact of defaunation will be highest in the Old World tropics, and an up to 4% assemblage-level decrease in fruit size would be required to maintain the global body size–fruit size relationship. Overall, our results suggest that while some palm species may be able to keep pace with future defaunation through evolutionary changes in fruit size, large-fruited species may be especially vulnerable to continued defaunation. Extinctions of megafauna can have cascading effects on their ecological communities. Here, Lim et al. investigate the relationships of historical and current mammalian frugivore body size with palm fruit size, then project how further mammal extinctions are likely to affect palm communities.
Late-glacial and Holocene palaeovegetation zonal reconstruction for central and north-central North America
Aim The purpose of this study is to develop palaeovegetation zonation models for central and north-central North America, based on late-Quaternary and Holocene pollen stratigraphic data (n = 246 sites). A secondary purpose was to evaluate an hypothesis (Strong & Hills, 2003) to explain the disjunct distribution of species in western Alberta. Location Hudson Bay-Lake Michigan to the Rocky Mountains region, north of 36° N to the Arctic Ocean (c. 70° N). Methods Pollen profiles spanning 40 years of palaeoecological research in North America were extracted from published and unpublished archival sources. Individual profiles were subdivided into 1000-year increments based on the assumption of a constant sedimentation rate between stratigraphic dates (e.g. surface sediments, radiocarbon 14Cdates, tephra layers). The pollen composition among profiles was standardized to 54 commonly recognized taxa, with percentage composition within each stratigraphic sample prorated to 100% prior to analysis. Near-surface sediments from these profiles were included as analogues of modern vegetation. Cluster analysis was used as a guide to the classification of 2356 temporal stratigraphic samples, which resulted in the recognition of 16 pollen groups. These groups were summarized in terms of their pollen composition, mapped, and used in combination with terrain information and an ecological knowledge of the study area to construct six physiognomically-based palaeovegetation zonation models at 2000-year intervals from 14,000 to 4000 yr BP (radiocarbon years before present). Results The 14,000 yr BP model placed Boreal and Cordilleran Forests proximal to the southern glacial front, whereas Arctic tundra dominated the Yukon Territory-Alaska ice-free zone. Pollen and macrofossil evidence suggests that this Boreal Forest zone contained a mixture of coniferous and deciduous tree species. Grassland was postulated immediately south of the forest zone, with its northern extreme near 49° N latitude in the Alberta-Montana border area. Separation of the Laurentide and Cordilleran glacial fronts about 12,000 yr BP initiated the northward advance of Boreal Forests into western Canada. By the end of the Hypsithermal at about 6000 yr BP, Boreal Forests occurred near the Arctic Ocean, and Grassland and Aspen Parkland zones may have extended to 54° N and 59° N latitude in Alberta, respectively. Between 6000 and 4000 yr BP, a 5° and 1° latitudinal southward shift of the northern Boreal Forest and Grassland/Aspen Parkland boundaries occurred, respectively, near their contemporary positions with corresponding expansions of the Subarctic and Arctic zones. Modern Canadian Cordilleran Forests along the eastern slopes of the Rocky Mountains were interpreted as originating from the north-central Montana-south-western Alberta area. Jack pine (Pinus banksiana Lamb.), a common Boreal Forest species, appears to have entered central Canada via the north side of Lake Superior after 11,000 yr BP. Main conclusions Modern vegetation in central Canada evolved from biomes located in the northern USA during the late-Quaternary. The Boreal Forest biome contained the same arboreal taxa as the modern vegetation, except it lacked jack pine. The proposed regional palaeovegetation models support the hypothesis of Strong & Hills (2003), but new independent palaeoecological data will be needed for a proper evaluation.
Optimizing extraction and targeted capture of ancient environmental DNA for reconstructing past environments using the PalaeoChip Arctic-1.0 bait-set
Sedimentary ancient DNA (sedaDNA) has been established as a viable biomolecular proxy for tracking taxon presence through time in a local environment, even in the total absence of surviving tissues. SedaDNA is thought to survive through mineral binding, facilitating long-term biomolecular preservation, but also challenging DNA isolation. Two common limitations in sedaDNA extraction are the carryover of other substances that inhibit enzymatic reactions, and the loss of authentic sedaDNA when attempting to reduce inhibitor co-elution. Here, we present a sedaDNA extraction procedure paired with targeted enrichment intended to maximize DNA recovery. Our procedure exhibits a 7.7–19.3x increase in on-target plant and animal sedaDNA compared to a commercial soil extraction kit, and a 1.2–59.9x increase compared to a metabarcoding approach. To illustrate the effectiveness of our cold spin extraction and PalaeoChip capture enrichment approach, we present results for the diachronic presence of plants and animals from Yukon permafrost samples dating to the Pleistocene-Holocene transition, and discuss new potential evidence for the late survival (~9700 years ago) of mammoth (Mammuthus sp.) and horse (Equus sp.) in the Klondike region of Yukon, Canada. This enrichment approach translates to a more taxonomically diverse dataset and improved on-target sequencing.
Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic
Permafrost deposits constitute a large organic carbon pool highly vulnerable to degradation and potential carbon release due to global warming. Permafrost sections along coastal and river bank exposures in NE Siberia were studied for organic matter (OM) characteristics and ice content. OM stored in Quaternary permafrost grew, accumulated, froze, partly decomposed, and refroze under different periglacial environments, reflected in specific biogeochemical and cryolithological features. OM in permafrost is represented by twigs, leaves, peat, grass roots, and plant detritus. The vertical distribution of total organic carbon (TOC) in exposures varies from 0.1 wt % of the dry sediment in fluvial deposits to 45 wt % in Holocene peats. Variations in OM parameters are related to changes in vegetation, bioproductivity, pedogenic processes, decomposition, and sedimentation rates during past climate variations. High TOC, high C/N, and low δ13C reflect less decomposed OM accumulated under wet, anaerobic soil conditions characteristic of interglacial and interstadial periods. Glacial and stadial periods are characterized by less variable, low TOC, low C/N, and high δ13C values indicating stable environments with reduced bioproductivity and stronger OM decomposition under dryer, aerobic soil conditions. Based on TOC data and updated information on bulk densities, we estimate average organic carbon inventories for ten different stratigraphic units in northeast Siberia, ranging from 7.2 kg C m−3 for Early Weichselian fluvial deposits, to 33.2 kg C m−3 for Middle Weichselian Ice Complex deposits, to 74.7 kg C m−3 for Holocene peaty deposits. The resulting landscape average is likely about 25% lower than previously published permafrost carbon inventories. Key Points Considerable OM variability in Siberian permafrost OM permafrost characteristics strongly linked to paleoenvironmental dynamics Downward revision of the overall organic carbon inventory in permafrost
Late Quaternary glaciations in the Taniantaweng Mountains
Constraining the timing and extent of Quaternary glaciations in the Tibetan Plateau (TP) is significant for the reconstruction of paleoclimatic environment and understanding the interrelationships among climate, tectonics, and glacial systems. We investigated the late Quaternary glacial history of the Qinggulong and Juequ valleys in the Taniantaweng Mountains, southeastern TP, using cosmogenic 10Be surface exposure dating. Four major glacial events were identified based on 26 10Be ages. The exposure ages of the oldest late Quaternary glaciation correspond to Marine Oxygen Isotope Stage (MIS) 6. The maximum glacial extent was dated to 48.5–41.1 ka (MIS 3), during the last glaciation, and was more advanced than that of the last glacial maximum (LGM). Geochronology and geomorphological evidence indicate that multiple glacial fluctuations occurred in the study area during the Early–Middle Holocene. These glacial fluctuations likely were driven by the North Atlantic climate oscillations, summer solar insolation variability, Asian summer monsoon intensity, and CO2 concentration.
Paleoenvironmental changes in the eastern Kumtag Desert, northwestern China since the late Pleistocene
Sedimentary records from the Kumtag (also known as Kumtagh) Desert (KMD) in northwestern China are investigated to better understand Late Quaternary paleoenvironmental changes in this hyper-arid region. Presented here are the results of probably the first systematic survey of sedimentary sequences from the KMD, with the chronology determined by the optically stimulated luminescence dating. The variation of sedimentary facies, supported by granular and geochemical paleoenvironmental proxies, is used to decipher the history of Late Quaternary environment changes. The results demonstrate that a constantly dry condition characterized the eastern KMD since the last glacial maximum, but with occurrences of wetter periods. From ca. 17 to 15 ka, fluvial activity was probably triggered by melting of glaciers in mountains located south of the KMD. A distinctly drier stage (ca. 13–7 ka) was recognized due to the prominent occurrence of aeolian sands. A wetter environment likely persisted between ca. 4.4 and 2.2 ka, consistent with evidence of human activities. While the causes of paleoenvironmental changes in the eastern KMD are still a matter of debate, the melting of glaciers in the Altyn-Tagh Mountains in the south must be considered as an important factor.