Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,860 result(s) for "Leaf Evolution"
Sort by:
Resolving the backbone of the Brassicaceae phylogeny for investigating trait diversity
The Brassicaceae family comprises c. 4000 species including economically important crops and the model plant Arabidopsis thaliana. Despite their importance, the relationships among major lineages in the family remain unresolved, hampering comparative research. Here, we inferred a Brassicaceae phylogeny using newly generated targeted enrichment sequence data of 1827 exons (> 940 000 bases) representing 63 species, as well as sequenced genome data of 16 species, together representing 50 of the 52 currently recognized Brassicaceae tribes. A third of the samples were derived from herbarium material, facilitating broad taxonomic coverage of the family. Six major clades formed successive sister groups to the rest of Brassicaceae. We also recovered strong support for novel relationships among tribes, and resolved the position of 16 taxa previously not assigned to a tribe. The broad utility of these phylogenetic results is illustrated through a comparative investigation of genome-wide expression signatures that distinguish simple from complex leaves in Brassicaceae. Our study provides an easily extendable dataset for further advances in Brassicaceae systematics and a timely higher-level phylogenetic framework for a wide range of comparative studies of multiple traits in an intensively investigated group of plants.
The origin and early evolution of vascular plant shoots and leaves
The morphology of plant fossils from the Rhynie chert has generated longstanding questions about vascular plant shoot and leaf evolution, for instance, which morphologies were ancestral within land plants, when did vascular plants first arise and did leaves have multiple evolutionary origins? Recent advances combining insights from molecular phylogeny, palaeobotany and evo–devo research address these questions and suggest the sequence of morphological innovation during vascular plant shoot and leaf evolution. The evidence pinpoints testable developmental and genetic hypotheses relating to the origin of branching and indeterminate shoot architectures prior to the evolution of leaves, and demonstrates underestimation of polyphyly in the evolution of leaves from branching forms in ‘telome theory’ hypotheses of leaf evolution. This review discusses fossil, developmental and genetic evidence relating to the evolution of vascular plant shoots and leaves in a phylogenetic framework. This article is part of a discussion meeting issue ‘The Rhynie cherts: our earliest terrestrial ecosystem revisited’.
Active suppression of a leaf meristem orchestrates determinate leaf growth
Leaves are flat determinate organs derived from indeterminate shoot apical meristems. The presence of a specific leaf meristem is debated, as anatomical features typical of meristems are not present in leaves. Here we demonstrate that multiple NGATHA (NGA) and CINCINNATA-class-TCP (CIN-TCP) transcription factors act redundantly, shortly after leaf initiation, to gradually restrict the activity of a leaf meristem in Arabidopsis thaliana to marginal and basal domains, and that their absence confers persistent marginal growth to leaves, cotyledons and floral organs. Following primordia initiation, the restriction of the broadly acting leaf meristem to the margins is mediated by the juxtaposition of adaxial and abaxial domains and maintained by WOX homeobox transcription factors, whereas other marginal elaboration genes are dispensable for its maintenance. This genetic framework parallels the morphogenetic program of shoot apical meristems and may represent a relic of an ancestral shoot system from which seed plant leaves evolved.
Challenging the paradigms of leaf evolution
Despite the extraordinary significance leaves have for life on Earth, their origin and development remain vigorously debated. More than a century of paleobotanical, morphological, and phylogenetic research has still not resolved fundamental questions about leaves. Developmental genetic data are sparse in ferns, and comparative studies of lycophytes and seed plants have reached opposing conclusions on the conservation of a leaf developmental program. We performed phylogenetic and expression analyses of a leaf developmental regulator (Class III HD-Zip genes; C3HDZs) spanning lycophytes and ferns. We show that a duplication and neofunctionalization of C3HDZs probably occurred in the ancestor of euphyllophytes, and that there is a common leaf developmental mechanism conserved between ferns and seed plants. We show C3HDZ expression in lycophyte and fern sporangia and show that C3HDZs have conserved expression patterns during initiation of lateral primordia (leaves or sporangia). This expression is maintained throughout sporangium development in lycophytes and ferns and indicates an ancestral role of C3HDZs in sporangium development. We hypothesize that there is a deep homology of all leaves and that a sporangium-specific developmental program was coopted independently for the development of lycophyte and euphyllophyte leaves. This provides molecular genetic support for a paradigm shift in theories of lycophyte leaf evolution.
The evolution, morphology, and development of fern leaves
Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology, and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development.
Simple and Divided Leaves in Ferns: Exploring the Genetic Basis for Leaf Morphology Differences in the Genus Elaphoglossum (Dryopteridaceae)
Despite the implications leaves have for life, their origin and development remain debated. Analyses across ferns and seed plants are fundamental to address the conservation or independent origins of megaphyllous leaf developmental mechanisms. Class I KNOX expression studies have been used to understand leaf development and, in ferns, have only been conducted in species with divided leaves. We performed expression analyses of the Class I KNOX and Histone H4 genes throughout the development of leaf primordia in two simple-leaved and one divided-leaved fern taxa. We found Class I KNOX are expressed (1) throughout young and early developing leaves of simple and divided-leaved ferns, (2) later into leaf development of divided-leaved species compared to simple-leaved species, and (3) at the leaf primordium apex and margins. H4 expression is similar in young leaf primordia of simple and divided leaves. Persistent Class I KNOX expression at the margins of divided leaf primordia compared with simple leaf primordia indicates that temporal and spatial patterns of Class I KNOX expression correlate with different fern leaf morphologies. However, our results also indicate that Class I KNOX expression alone is not sufficient to promote divided leaf development in ferns. Class I KNOX patterns of expression in fern leaves support the conservation of an independently recruited developmental mechanism for leaf dissection in megaphylls, the shoot-like nature of fern leaves compared with seed plant leaves, and the critical role marginal meristems play in fern leaf development.
Assessing the evolutionary history of the fern family Dipteridaceae (Gleicheniales) by incorporating both extant and extinct members in a combined phylogenetic study
Premise of the Study Dipteridaceae is a lineage of ferns that has existed from the early Mesozoic and is known for its extensive fossil record. By integrating information from all described extant and extinct genera into a single phylogenetic study, this paper aims to examine the taxonomy of the group on a whole and explore character evolution within the lineage across time. Methods A morphological matrix of 51 characters was developed for 72 species (43 extinct and 29 extant) based on published information. Morphological characters were combined with nucleotide sequences for four chloroplast genes (rbcL, atpA, atpB, and rps4) for extant taxa, and combined parsimony analyses were conducted to infer evolutionary trends in the group. Key Results Dipteridaceae was found to be monophyletic and characterized by highly anastomosing minor veins forming a meshwork of areoles with free‐included veinlets. Based on our analyses, we recognize six previously described genera (i.e., Goeppertella, Thaumatopteris, Clathropteris, Digitopteris, Dipteris, and Cheiropleuria) and one new genus (i.e., Sewardalea). Fossils currently described as Dictyophyllum, Kenderlykia, Hausmannia, and Protorhipis are ambiguously placed on the tree and are recognized as possibly unnatural morphogenera. Conclusions Overall, the evolutionary trend in Dipteridaceae has been toward increasing complexity in the venation pattern and laminal fusion. Only the Hausmannia‐type frond with dichotomizing primary veins and relatively fused lamina persisted in the later part of the Mesozoic to the present. Within the crown group, we see evidence of re‐radiation of frond forms in Dipteris and Cheiropleuria.
Evolution of leaf developmental mechanisms
Leaves are determinate organs produced by the shoot apical meristem. Land plants demonstrate a large range of variation in leaf form. Here we discuss evolution of leaf form in the context of our current understanding of leaf development, as this has emerged from molecular genetic studies in model organisms. We also discuss specific examples where parallel studies of development in different species have helped understanding how diversification of leaf form may occur in nature.
Leaf evolution in early-diverging ferns
With the exception of angiosperms, the main euphyllophyte lineages (i.e. ferns sensu lato, progymnosperms and gymnosperms) had evolved laminate leaves by the Late Devonian. The evolution of laminate leaves, however, remains unclear for early-diverging ferns, largely represented by fern-like plants. This study presents a novel fern-like taxon with pinnules, which provides new insights into the early evolution of laminate leaves in early-diverging ferns. Macrofossil specimens were collected from the Upper Devonian (Famennian) Wutong Formation of Anhui and Jiangsu Provinces, South China. A standard degagement technique was employed to uncover compressed plant portions within the rock matrix. A new fern-like taxon, SHOUGANGIA BELLA GEN ET SP NOV: , is described and represents an early-diverging fern with highly derived features. It has a partially creeping stem with adventitious roots only on one side, upright primary and secondary branches arranged in helices, tertiary branches borne alternately or (sub)oppositely, laminate and usually lobed leaves with divergent veins, and complex fertile organs terminating tertiary branches and possessing multiple divisions and numerous terminal sporangia. Shougangia bella provides unequivocal fossil evidence for laminate leaves in early-diverging ferns. It suggests that fern-like plants, along with other euphyllophyte lineages, had independently evolved megaphylls by the Late Devonian, possibly in response to a significant decline in atmospheric CO2 concentration. Among fern-like plants, planate ultimate appendages are homologous with laminate pinnules, and in the evolution of megaphylls, fertile organs tend to become complex.
LEAF SHAPE EVOLUTION IN THE SOUTH AFRICAN GENUS PELARGONIUM L' HER. (GERANIACEAE)
Leaf shapes reflect complex assemblages of shape-determining elements, yet evolutionary studies tend to treat leaf shape as a single attribute, for example cordate or linear. As with all complex structures, individual elements of a leaf could theoretically evolve independently and at different rates to the extent permitted by genetic and functional limitations. We examined relative evolutionary lability of shape-determining elements in the highly diverse South African plant genus Pelargonium (Geraniaceae). We used SIMMAP to calculate Bayesian posterior probabilities for ancestral states of leaf-shape characters for major nodes across multiple phylogenetic trees. Trees were derived from a Bayesian analysis of DNA sequence data from four partitions. We found that shape elements differed in rates of character-state transformations across the tree. Leaf base, apex, and overall outline had low rates. Transformations in venation occurred at slightly higher rates and were associated with shifts in venation among major clades. Leaf margin type and overall leaf size showed intermediate rates, whereas high rates were observed in the extent of lamina lobing and functional leaf size. The results indicate that suites of elements characteristic of the recently evolved xerophytic lineage, for example pinnate venation, dissected lamina, and entire margins, were acquired piecemeal over nested levels of the phylogeny.