Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
205
result(s) for
"Leaky modes"
Sort by:
Pushing the limit of high-Q mode of a single dielectric nanocavity
by
Xu, Lei
,
Miroshnichenko, Andrey E
,
Huang, Lujun
in
Eigenvalues
,
Electric fields
,
Finite difference time domain method
2021
High-index dielectric resonators support different types of resonant modes. However, it is challenging to achieve a high-Q factor in a single dielectric nanocavity due to the non-Hermitian property of the open system. We present a universal approach of finding out a series of high-Q resonant modes in a single nonspherical dielectric cavity with a rectangular cross section by exploring the quasi bound-state-in-the-continuum (QBIC). Unlike conventional methods relying on heavy brutal force computations (i.e., frequency scanning by the finite difference time domain method), our approach is built upon Mie mode engineering, through which many high-Q modes can be easily achieved by constructing avoid-crossing (or crossing) of the eigenvalue for pair-leaky modes. The calculated Q-factor of mode TE(5,7) can be up to Qtheory = 2.3 × 104 for a freestanding square nanowire (NW) (n = 4), which is 64 times larger than the highest Q-factor (Qtheory ≈ 360) reported so far in a single Si disk. Such high-Q modes can be attributed to suppressed radiation in the corresponding eigenchannels and simultaneously quenched electric (magnetic) field at momentum space. As a proof of concept, we experimentally demonstrate the emergence of the high-Q resonant modes [Q ≈ 211 for mode TE(3,4), Q ≈ 380 for mode TE(3,5), and Q ≈ 294 for mode TM(3,5)] in the scattering spectrum of a single silicon NW.
Journal Article
Broadband Circular Polarizer Based on Chirped Double-Helix Chiral Fiber Grating
by
Timoteo, Bras Samuel Malumba
,
Xue, Linlin
,
Qiu, Weiwei
in
Bandwidths
,
Broadband
,
Coupled modes
2022
We propose an all-fiber broadband circular polarizer based on leaky mode coupling and a phase-matched turning point (PMTP) in a chirped, double-helix, chiral, long-period, fiber grating (CLPG). The CLPG was coated with a material in which the refractive index was higher than that of the fiber cladding, enabling the coupling of the core mode to leaky modes to achieve a desired extinction ratio. The complex coupled-mode theory was employed to investigate the coupling mechanism and conditions under which the desired coupling efficiency could be achieved. Moreover, the PMTP in phase-matched curves, which resolved the conflict between the operating bandwidth and the grating pitch range of the CLPG and made a large bandwidth with a small grating pitch possible, was used in the design to achieve a compact structure. Finally, two broadband circular polarizers with an extinction ratio above 25 dB were simulated; one had a bandwidth of over 120 nm and a length of 3.5 cm, and the other had a bandwidth of over 300 nm and a length of 8 cm.
Journal Article
Polarization-encrypted high-resolution full-color images exploiting hydrogenated amorphous silicon nanogratings
2020
As a prominent alternative to toxic dyes/pigments, nanostructural color pixels have garnered tremendous attention in applications related to display/imaging devices and color printings. However, current color pixels mostly offer static color responses. In relation to this, dynamic color tuning properties must be investigated in order to expand their functionalities and promote their use in the fields of encryption and anti-counterfeiting. In this study, a simple array of hydrogenated amorphous silicon nanogratings is proposed to realize polarization-encrypted full-color images via the coupling of incident light into different leaky mode resonances within the nanogratings. The proposed pixels can readily switch from vivid full colors to indistinguishable orange color by altering the incident polarization state. Hence, unlike the reported polarization-tuned color generation schemes that merely allow for the color variation of the image or require complicated designs to hide the color information, the proposed approach can encrypt arbitrary full-color images via a simple tuning of the incident polarization state. Owing to the localized leaky mode resonances supported by the nanogratings, the pixel can still implement the polarization-encrypted functionality even when it contains only four gratings, thus enabling a remarkably high resolution. The proposed simple scheme may provide a credible new pathway for accelerating the practical applications of high-resolution encryption and anti-counterfeiting.
Journal Article
Light-Trapping Engineering for the Enhancements of Broadband and Spectra-Selective Photodetection by Self-Assembled Dielectric Microcavity Arrays
2019
Light manipulation has drawn great attention in photodetectors towards the specific applications with broadband or spectra-selective enhancement in photo-responsivity or conversion efficiency. In this work, a broadband light regulation was realized in photodetectors with the improved spectra-selective photo-responsivity by the optimally fabricated dielectric microcavity arrays (MCAs) on the top of devices. Both experimental and theoretical results reveal that the light absorption enhancement in the cavities is responsible for the improved sensitivity in the detectors, which originated from the light confinement of the whispering-gallery-mode (WGM) resonances and the subsequent photon coupling into active layer through the leaky modes of resonances. In addition, the absorption enhancements in specific wavelength regions were controllably accomplished by manipulating the resonance properties through varying the effective optical length of the cavities. Consequently, a responsivity enhancement up to 25% within the commonly used optical communication and sensing region (800 to 980 nm) was achieved in the MCA-decorated silicon positive-intrinsic-negative (PIN) devices compared with the control ones. This work well demonstrated that the leaky modes of WGM resonant dielectric cavity arrays can effectively improve the light trapping and thus responsivity in broadband or selective spectra for photodetection and will enable future exploration of their applications in other photoelectric conversion devices.
Journal Article
Status of Leaky Mode Holography
2021
It will soon be a decade since leaky mode waveguide devices were presented as a solution for holographic video displays. This paper seeks to provide a brief, topical review of advances made during that time. Specifically, we review the new methods and architectures that have been developed over this period. This work draws primarily from papers seeking to present dynamic holographic patterns using mode coupling from indiffused waveguides on lithium niobate. The primary participants during this time period have been groups from the Massachusetts Institute of Technology, Brigham Young University, and Draper. We also describe the challenges that remain. The body of work reviewed speaks to the need for further development, but it also reaffirms that leaky mode waveguides continue to hold a unique place within spatial light modulation for holographic video displays.
Journal Article
Bound states within the radiation continuum in diffraction gratings and the role of leaky modes
by
Alù, Andrea
,
Monticone, Francesco
in
diffraction gratings
,
Eigenvectors
,
Electromagnetic properties
2017
We discuss resonant states with diverging Q factor within the radiation continuum based on the anomalous interaction of leaky guided modes and diffracted waves in suitably designed reflection gratings. We show that these trapped optical states can be understood within the framework of leaky-wave theory, which unveils their generation process and dynamics. Our findings reveal an interesting mechanism to realize embedded eigenstates in periodic structures, shedding light on their electromagnetic properties, and offering the possibility to quantitatively predict their occurrence and systematically design optimal structures that support them. The realization of extraordinary optical trapping in open structures may be important for applications that require strongly confined and enhanced fields and high selectivity in angle and frequency.
Journal Article
Analysis of Leaky Modes in Photonic Crystal Fibers Using the Surface Integral Equation Method
2018
A fully vectorial algorithm based on the surface integral equation method for the modelling of leaky modes in photonic crystal fibers (PCFs) by solely solving the complex propagation constants of characteristic equations is presented. It can be used for calculations of the complex effective index and confinement losses of photonic crystal fibers. As complex root examination is the key technique in the solution, the new algorithm which possesses this technique can be used to solve the leaky modes of photonic crystal fibers. The leaky modes of solid-core PCFs with a hexagonal lattice of circular air-holes are reported and discussed. The simulation results indicate how the confinement loss by the imaginary part of the effective index changes with air-hole size, the number of rings of air-holes, and wavelength. Confinement loss reductions can be realized by increasing the air-hole size and the number of air-holes. The results show that the confinement loss rises with wavelength, implying that the light leaks more easily for longer wavelengths; meanwhile, the losses are decreased significantly as the air-hole size d/Λ is increased.
Journal Article
Probing bulk topological invariants using leaky photonic lattices
2021
Topological invariants characterizing filled Bloch bands underpin electronic topological insulators and analogous artificial lattices for Bose–Einstein condensates, photonics and acoustic waves. In bosonic systems, there is no Fermi exclusion principle to enforce uniform band filling, which makes measuring their bulk topological invariants challenging. Here we show how to achieve the controllable filling of bosonic bands using leaky photonic lattices. Leaky photonic lattices host transitions between bound and radiative modes at a critical energy, which plays a role analogous to the electronic Fermi level. Tuning this effective Fermi level into a bandgap results in the disorder-robust dynamical quantization of bulk topological invariants such as the Chern number. Our findings establish leaky lattices as a highly flexible platform for exploring topological and non-Hermitian wave physics.Topological materials are characterized by the topological invariants of filled bands, which cannot be used for bosonic systems. Instead, their topological invariants can be found via the transition from bound to leaky modes in photonic lattices.
Journal Article
Bound states in the continuum (BIC) accompanied by avoided crossings in leaky-mode photonic lattices
by
Kee, Chul-Sik
,
Kim, Seong-Han
,
Lee, Sun-Goo
in
Asymmetry
,
avoided crossing
,
bound state in the continuum
2020
When two nonorthogonal resonances are coupled to the same radiation channel, avoided crossing arises and a bound state in the continuum (BIC) appears with appropriate conditions in parametric space. This paper presents numerical and analytical results on the properties of avoided crossing and BIC due to the coupled guided-mode resonances in one-dimensional (1D) leaky-mode photonic lattices with slab geometry. In symmetric photonic lattices with up-down mirror symmetry, Friedrich–Wintgen BICs with infinite lifetime are accompanied by avoided crossings due to the coupling between two guided modes with the same transverse parity. In asymmetric photonic lattices with broken up-down mirror symmetry, quasi-BICs with finite lifetime appear with avoided crossings because radiating waves from different modes cannot be completely eliminated. We also show that unidirectional-BICs are accompanied by avoided crossings due to guided-mode resonances with different transverse parities in asymmetric photonic lattices. The
factor of a unidirectional-BIC is finite, but its radiation power in the upward or downward direction is significantly smaller than that in the opposite direction. Our results may be helpful in engineering BICs and avoided crossings in diverse photonic systems that support leaky modes.
Journal Article
Terahertz bound state in the continuum in dielectric membrane metasurfaces
by
Xu, Yuehong
,
Zhang, Xueqian
,
Yang, Quanlong
in
bound state in the continuum
,
Dielectrics
,
Electromagnetic radiation
2022
Mie-resonant metasurfaces composed of subwavelength dielectric resonators enable an efficient route for electromagnetic wave manipulation. Among these manipulations, a localized mode with a high-quality factor coexisting with a continuous spectrum of radiating waves termed bound state in the continuum (BIC) can arouse many exotic applications in photonics. Here, we demonstrate the terahertz BIC in a dielectric membrane metasurface and analyze its resonant nature based on Mie-resonant multipoles and vector spherical harmonics. The intrinsic splitting of the resonances under oblique incidence is also explored, in which the conversion of multipole radiation patterns versus the oblique angle will drive the resonances from BIC to leaky modes or vice versa. Both Γ and off-Γ point BICs could be identified as the superposition cancellation of vector spherical harmonics for both p-wave and s-wave. Our research not only provides a novel perspective for exploring the essence of BIC metasurfaces in the terahertz regime, but also points new opportunities for achieving terahertz BIC metasurfaces with ultra-high quality factors.
Journal Article