Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
32,701
result(s) for
"Learning transfer"
Sort by:
A Review of Deep Transfer Learning and Recent Advancements
by
Arabnia, Hamid Reza
,
Iman, Mohammadreza
,
Rasheed, Khaled
in
Algorithms
,
Analysis
,
Artificial intelligence
2023
Deep learning has been the answer to many machine learning problems during the past two decades. However, it comes with two significant constraints: dependency on extensive labeled data and training costs. Transfer learning in deep learning, known as Deep Transfer Learning (DTL), attempts to reduce such reliance and costs by reusing obtained knowledge from a source data/task in training on a target data/task. Most applied DTL techniques are network/model-based approaches. These methods reduce the dependency of deep learning models on extensive training data and drastically decrease training costs. Moreover, the training cost reduction makes DTL viable on edge devices with limited resources. Like any new advancement, DTL methods have their own limitations, and a successful transfer depends on specific adjustments and strategies for different scenarios. This paper reviews the concept, definition, and taxonomy of deep transfer learning and well-known methods. It investigates the DTL approaches by reviewing applied DTL techniques in the past five years and a couple of experimental analyses of DTLs to discover the best practice for using DTL in different scenarios. Moreover, the limitations of DTLs (catastrophic forgetting dilemma and overly biased pre-trained models) are discussed, along with possible solutions and research trends.
Journal Article
Third language acquisition and linguistic transfer
\"Is acquiring a third language the same as acquiring a second? Are all instances of non-native language acquisition simply one and the same? In this first book-length study of the topic, the authors systematically walk the reader through the evidence to answer these questions. They suggest that acquiring an additional language in bilinguals (of all types) is unique, and reveals things about the links between language and mind, brain, and cognition, which are otherwise impossible to appreciate. The patterns of linguistic transfer and what motivates it when there are choices (as can only be seen starting in third language acquisition) underscores a key concept in linguistic and psychological sciences: Economy. Overviewing the subfields examining multilingual acquisition and processing, this book offers an expanded systematic review of the field of multilingual morphosyntactic transfer, as well as providing recommendations for the future emerging field\"-- Provided by publisher.
Transfer-Learning-Based Intrusion Detection Framework in IoT Networks
by
Otero Calviño, Beatriz
,
Valls, Pol
,
Verdú Mulà, Javier
in
Accuracy
,
Aprenentage automàtic
,
Chemical technology
2022
Cyberattacks in the Internet of Things (IoT) are growing exponentially, especially zero-day attacks mostly driven by security weaknesses on IoT networks. Traditional intrusion detection systems (IDSs) adopted machine learning (ML), especially deep Learning (DL), to improve the detection of cyberattacks. DL-based IDSs require balanced datasets with large amounts of labeled data; however, there is a lack of such large collections in IoT networks. This paper proposes an efficient intrusion detection framework based on transfer learning (TL), knowledge transfer, and model refinement, for the effective detection of zero-day attacks. The framework is tailored to 5G IoT scenarios with unbalanced and scarce labeled datasets. The TL model is based on convolutional neural networks (CNNs). The framework was evaluated to detect a wide range of zero-day attacks. To this end, three specialized datasets were created. Experimental results show that the proposed TL-based framework achieves high accuracy and low false prediction rate (FPR). The proposed solution has better detection rates for the different families of known and zero-day attacks than any previous DL-based IDS. These results demonstrate that TL is effective in the detection of cyberattacks in IoT environments.
Journal Article
A survey on heterogeneous transfer learning
2017
Transfer learning has been demonstrated to be effective for many real-world applications as it exploits knowledge present in labeled training data from a source domain to enhance a model’s performance in a target domain, which has little or no labeled target training data. Utilizing a labeled source, or auxiliary, domain for aiding a target task can greatly reduce the cost and effort of collecting sufficient training labels to create an effective model in the new target distribution. Currently, most transfer learning methods assume the source and target domains consist of the same feature spaces which greatly limits their applications. This is because it may be difficult to collect auxiliary labeled source domain data that shares the same feature space as the target domain. Recently, heterogeneous transfer learning methods have been developed to address such limitations. This, in effect, expands the application of transfer learning to many other real-world tasks such as cross-language text categorization, text-to-image classification, and many others. Heterogeneous transfer learning is characterized by the source and target domains having differing feature spaces, but may also be combined with other issues such as differing data distributions and label spaces. These can present significant challenges, as one must develop a method to bridge the feature spaces, data distributions, and other gaps which may be present in these cross-domain learning tasks. This paper contributes a comprehensive survey and analysis of current methods designed for performing heterogeneous transfer learning tasks to provide an updated, centralized outlook into current methodologies.
Journal Article
Deep convolutional neural networks for mammography: advances, challenges and applications
by
Abdelhafiz, Dina
,
Nabavi, Sheida
,
Yang, Clifford
in
Accuracy
,
Algorithms
,
Artificial intelligence
2019
Background
The limitations of traditional computer-aided detection (CAD) systems for mammography, the extreme importance of early detection of breast cancer and the high impact of the false diagnosis of patients drive researchers to investigate deep learning (DL) methods for mammograms (MGs). Recent breakthroughs in DL, in particular, convolutional neural networks (CNNs) have achieved remarkable advances in the medical fields. Specifically, CNNs are used in mammography for lesion localization and detection, risk assessment, image retrieval, and classification tasks. CNNs also help radiologists providing more accurate diagnosis by delivering precise quantitative analysis of suspicious lesions.
Results
In this survey, we conducted a detailed review of the strengths, limitations, and performance of the most recent CNNs applications in analyzing MG images. It summarizes 83 research studies for applying CNNs on various tasks in mammography. It focuses on finding the best practices used in these research studies to improve the diagnosis accuracy. This survey also provides a deep insight into the architecture of CNNs used for various tasks. Furthermore, it describes the most common publicly available MG repositories and highlights their main features and strengths.
Conclusions
The mammography research community can utilize this survey as a basis for their current and future studies. The given comparison among common publicly available MG repositories guides the community to select the most appropriate database for their application(s). Moreover, this survey lists the best practices that improve the performance of CNNs including the pre-processing of images and the use of multi-view images. In addition, other listed techniques like transfer learning (TL), data augmentation, batch normalization, and dropout are appealing solutions to reduce overfitting and increase the generalization of the CNN models. Finally, this survey identifies the research challenges and directions that require further investigations by the community.
Journal Article
Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review
by
Soar, Jeffrey
,
Turner, Kathryn
,
Rana, Rajib
in
Acknowledgment
,
Archives & records
,
Artificial intelligence
2023
Natural Language Processing (NLP) is widely used to extract clinical insights from Electronic Health Records (EHRs). However, the lack of annotated data, automated tools, and other challenges hinder the full utilisation of NLP for EHRs. Various Machine Learning (ML), Deep Learning (DL) and NLP techniques are studied and compared to understand the limitations and opportunities in this space comprehensively.
After screening 261 articles from 11 databases, we included 127 papers for full-text review covering seven categories of articles: (1) medical note classification, (2) clinical entity recognition, (3) text summarisation, (4) deep learning (DL) and transfer learning architecture, (5) information extraction, (6) Medical language translation and (7) other NLP applications. This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.
EHR was the most commonly used data type among the selected articles, and the datasets were primarily unstructured. Various ML and DL methods were used, with prediction or classification being the most common application of ML or DL. The most common use cases were: the International Classification of Diseases, Ninth Revision (ICD-9) classification, clinical note analysis, and named entity recognition (NER) for clinical descriptions and research on psychiatric disorders.
We find that the adopted ML models were not adequately assessed. In addition, the data imbalance problem is quite important, yet we must find techniques to address this underlining problem. Future studies should address key limitations in studies, primarily identifying Lupus Nephritis, Suicide Attempts, perinatal self-harmed and ICD-9 classification.
•Physiological disorders, such as dementia and geriatric mental health, have been identified as promising research areas.•SVM, boosting techniques, LR, LSTM, RNN, and CNNs are appropriate for analysing unstructured free text data for downstream EHRs applications.•We find that while deep learning algorithms have achieved great success in the NLP sector, their application in the biological realm remains difficult.•Transformer-based models for free text analysis, are yet to be used extensively, and conventional methods are currently preferred.
Journal Article
DAD-Net: Classification of Alzheimer’s Disease Using ADASYN Oversampling Technique and Optimized Neural Network
by
Saqib Mahmood
,
Mian Muhammad Sadiq Fareed
,
Meng Joo Er
in
Accuracy
,
Advertising executives
,
Algorithms
2022
Alzheimer’s Disease (AD) is a neurological brain disorder that causes dementia and neurological dysfunction, affecting memory, behavior, and cognition. Deep Learning (DL), a kind of Artificial Intelligence (AI), has paved the way for new AD detection and automation methods. The DL model’s prediction accuracy depends on the dataset’s size. The DL models lose their accuracy when the dataset has an imbalanced class problem. This study aims to use the deep Convolutional Neural Network (CNN) to develop a reliable and efficient method for identifying Alzheimer’s disease using MRI. In this study, we offer a new CNN architecture for diagnosing Alzheimer’s disease with a modest number of parameters, making it perfect for training a smaller dataset. This proposed model correctly separates the early stages of Alzheimer’s disease and displays class activation patterns on the brain as a heat map. The proposed Detection of Alzheimer’s Disease Network (DAD-Net) is developed from scratch to correctly classify the phases of Alzheimer’s disease while reducing parameters and computation costs. The Kaggle MRI image dataset has a severe problem with class imbalance. Therefore, we used a synthetic oversampling technique to distribute the image throughout the classes and avoid the problem. Precision, recall, F1-score, Area Under the Curve (AUC), and loss are all used to compare the proposed DAD-Net against DEMENET and CNN Model. For accuracy, AUC, F1-score, precision, and recall, the DAD-Net achieved the following values for evaluation metrics: 99.22%, 99.91%, 99.19%, 99.30%, and 99.14%, respectively. The presented DAD-Net outperforms other state-of-the-art models in all evaluation metrics, according to the simulation results.
Journal Article