Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
18 result(s) for "Lemna minuta"
Sort by:
Effects of Microplastic Contamination on the Aquatic Plant Lemna minuta (Least Duckweed)
Microplastics are widely spread in aquatic environments. Although they are considered among the most alarming contaminants, toxic effects on organisms are unclear, particularly on freshwater plants. In this study, the duckweed Lemna minuta was grown on different concentrations (50, 100 mg/L) of poly(styrene-co-methyl methacrylate) microplastics (MP) and exposure times (T0, T7, T14, T28 days). The phytotoxic effects of MP were investigated by analyzing several plant morphological and biochemical parameters (frond and root size, plant growth, chlorophyll, and malondialdehyde content). Observations by scanning electron microscope revealed MP adsorption on plant surfaces. Exposition to MP adversely affected plant growth and chlorophyll content with respect to both MP concentrations and exposure times. Conversely, malondialdehyde measurements did not indicate an alteration of oxidative lipid damage in plant tissue. The presence of MP induced root elongation when compared to the control plants. The effects of MP on L. minuta plants were more evident at T28. These results contribute to a better understanding of MP’s impact on aquatic plants and highlight that MP contamination manifests with chronic-type effects, which are thus detectable at longer exposure times of 7 days than those traditionally used in phytotoxicology tests on duckweeds.
Phytoremediation potential of the duckweeds Lemna minuta and Lemna minor to remove nutrients from treated waters
Phytoremediation potential of duckweeds ( Lemna minuta , Lemna minor ) to remove nutrients from simulated wastewater was analyzed. In two separate experiments, the two species were grown for 28 days in waters enriched with nitrate and phosphate to simulate nutrient concentrations of domestic wastewater. Water physical and chemical measurements (temperature, pH, conductivity, oxygen) and plant physiological and biochemical analysis (biomass, relative growth rate–RGR, nutrient and chlorophyll contents, peroxidative damage, bioconcentration factor–BCF) were made to test and compare the phytoremediation capacity of the two Lemna species. L. minuta biomass increased almost tenfold during the time-course of the treatment resulting in a doubling of the mat thickness and a RGR of 0.083 ± 0.001 g/g day. Maximum frond content of phosphate was reached by day 21 (increase over 165%) and nitrate by day 7 (10%). According to the BCF results (BCF > 1000), L. minuta was a hyperaccumulator for both nutrients . On the other hand, L. minor biomass and mat thickness decreased continuously during incubation (RGR = − 0.039 ± 0.004 g/g day). In L. minor fronds, phosphate content increased until day 14, after which there was a decrease until the end of the incubation. Frond nitrate content significantly decreased by day 7, but then remained relatively constant until the end of the experiment. L. minor proved to be hyperaccumulator for phosphates, but not for nitrates. Results indicated L. minuta has a greater potential than L. minor to remove both nutrients by bioaccumulation, especially phosphates, demonstrated also by better physiological and biochemical responses. However, during the incubation, the chlorophyll content of L. minuta mat did continuously decrease and peroxidative damage had increased until day 14, indicating that the system was under some kind of stress. Strategies to avoid this stress were discussed.
Habitat change and alteration of plant and invertebrate communities in waterbodies dominated by the invasive alien macrophyte Lemna minuta Kunth
The free-floating American duckweed, Lemna minuta, is an invasive species now widespread in Europe. Yet, its impact on freshwater ecosystems has been poorly investigated. In this study, the effects of the presence of this invasive duckweed on water quality, and aquatic plant and invertebrate communities were evaluated in sites in Central Italy. Water chemical and physical factors and community descriptors were analyzed to identify these effects. Surveys were carried out across 17 paired aquatic sites. Site pairs were similar in microclimate, hydrogeology and water quality, but differed in relation to the presence/absence of L. minuta floating mats. In sites with mats, light and dissolved oxygen in water were negatively correlated with increasing mat coverage and thickness. The limited light and hypoxic conditions under mats inhibited plant growth and had a selective impact on the invertebrate community. Sites with L. minuta had aquatic communities with a lower plant taxa richness and a contrasting composition, compared with those in sites without. At sites with mats some plants were unaffected, but the majority of plant taxa documented at sites without Lemna were no present at sites with Lemna or were very rare (macroalgae, submerged rhizophytes). As for invertebrates, hypoxic-tolerant taxa dominated under mats (Ostracoda, Copepoda, Isopoda), whilst those more sensitive to oxygen depletion, or obligate herbivores, or those with a winged stage or swimming on water surface, were rare or absent (Ephemeroptera, Amphipoda, Chironomus, Notonecta). Lemna minuta mats presence was associated with alterations in the underlying aquatic ecosystem, severely threatening the conservation of these habitats. Active management strategies, including spread-prevention techniques, or mechanical removal combined with biological control, are required to conserve these habitats.
“Step by step”: high frequency short-distance epizoochorous dispersal of aquatic macrophytes
Aquatic macrophytes can successfully colonise and re-colonise areas separated by space and time. The mechanisms underlying such “mobility” are not well understood, but it has often been hypothesised that epizoochory (external dispersal) plays an important role. Yet, there is only limited, and mostly anecdotal, evidence concerning successful epizoochorous dispersal of aquatic macrophytes, particularly in the case of short-distance dispersal. Here we examine in situ and ex situ dispersal of aquatic macrophytes, including three invasive alien species. A high frequency of Lemna minor Linnaeus dispersal was observed in situ, and this was linked to bird-mediated epizoochory. We concluded that wind had no effect on dispersal. Similarly, in an ex situ examination Lemna minuta Kunth and Azolla filiculoides Lamarck, were found to be dispersed with a high frequency by mallard ducks ( Anas platyrhynchos ). No dispersal was measured for Elodea nuttalli (Planchon) H. St. John. It is concluded that short-distance or “stepping-stone” dispersal via bird-mediated epizoochory can occur with high frequencies, and therefore can play an important role in facilitating colonisation, range expansion and biological invasion of macrophytes.
Clonal diversity amongst island populations of alien, invasive Lemna minuta kunth
Invasive alien species can negatively impact on newly colonised ecosystems. Thus, it is important to understand factors that facilitate invasiveness. Genetic diversity will enable a species to exploit a variety of environmental conditions. Yet, the process of dispersal to a new ecosystem will commonly create a genetic bottleneck and, hence, result in low diversity. Here we explored variability at genetic and morpho-physiological level of island of Ireland populations of alien, invasive Lemna minuta. A comparison of nine clones of L. minuta with nine clones of co-generic, native Lemna minor shows similar levels of genetic diversity across both species. Thus, the successful invasion of Ireland by L. minuta is associated with substantial, intraspecific diversity. It is hypothesised that increased biodiversity is due to repeated invasions from continental Europe, which occurred despite the geographic barriers separating the island from mainland Europe.
Functional Response (FR) and Relative Growth Rate (RGR) Do Not Show the Known Invasiveness of Lemna minuta (Kunth)
Growing travel and trade threatens biodiversity as it increases the rate of biological invasions globally, either by accidental or intentional introduction. Therefore, avoiding these impacts by forecasting invasions and impeding further spread is of utmost importance. In this study, three forecasting approaches were tested and combined to predict the invasive behaviour of the alien macrophyte Lemna minuta in comparison with the native Lemna minor: the functional response (FR) and relative growth rate (RGR), supplemented with a combined biomass-based nutrient removal (BBNR). Based on the idea that widespread invasive species are more successful competitors than local, native species, a higher FR and RGR were expected for the invasive compared to the native species. Five different nutrient concentrations were tested, ranging from low (4 mgN.L-1 and 1 mgP.L-1) to high (70 mgN.L-1 and 21 mgP.L-1). After four days, a significant amount of nutrients was removed by both Lemna spp., though significant differences among L. minor and L. minuta were only observed at lower nutrient concentrations (lower than 17 mgN.L-1 and 6 mgP.L-1) with higher nutrient removal exerted by L. minor. The derived FR did not show a clear dominance of the invasive L. minuta, contradicting field observations. Similarly, the RGR ranged from 0.4 to 0.6 d-1, but did not show a biomass-based dominance of L. minuta (0.5 ± 0.1 d-1 versus 0.63 ± 0.09 d-1 for L. minor). BBNR showed similar results as the FR. Contrary to our expectations, all three approaches resulted in higher values for L. minor. Consequently, based on our results FR is sensitive to differences, though contradicted the expectations, while RGR and BBNR do not provide sufficient power to differentiate between a native and an invasive alien macrophyte and should be supplemented with additional ecosystem-based experiments to determine the invasion impact.
Characterization of the physico-chemical properties of the natural habitat and in vitro culture effects on the biochemistry, proliferation and morphology of Lemna minuta
In this study, the ecological conditions of the natural habitat of Lemna minuta Kunth in Morocco were investigated, and the impact of five synthetic growth media (Murashige-Skoog (MS), Schenk-Hildebrand (SH), Hoagland medium (HM), 10X Algal Assay Procedure (AAP), and Swedish Standard Institute medium (SIS)) on the morphophysiological and biochemical parameters was analysed. The morphophysiological parameters included root length, frond surface area, and fresh weight, while the biochemical parameters included photosynthetic pigments, carbohydrates, and protein content. The study was conducted in vitro in two phases: an uncontrolled aeration system (Phase I) and a controlled aeration system (Phase II). The results showed that the pH, conductivity, salinity, and ammonium levels in the natural habitat were within the optimal range for duckweed growth. The measured orthophosphate concentrations were higher compared to previous observations, while the recorded chemical oxygen demand values were low. The study also revealed a significant effect of the culture medium composition on the morphophysiological and biochemical parameters of the duckweed. The fresh weight biomass, relative growth rate in fronds, relative growth rate in surface area, root length, protein content, carbohydrates, chlorophyll (a), chlorophyll (b), total chlorophyll, carotenoids, and the chlorophyll (a/b) ratio were all affected by the culture medium. The most accurate regression models described the growth index GI(F) based on time and in vitro culture conditions in both phases. In Phase I, the best models for MS, SIS, AAP, and SH media were linear, weighted quadratic, cubic, and weighted cubic, respectively. In Phase II, the best models for all growth media were linear. The time coefficients (in days) for Phase II were 0.321, 0.547, 1.232, 1.470, and 0.306 for AAP, HM, MS, SH, and SIS, respectively. Comparing the morphophysiological and biochemical parameters of fronds from different media and analysing the regression model results showed that the SH and MS media were the best among the tested media for the in vitro culture of L. minuta in controlled aeration conditions. However, further research is needed to develop new synthetic media that best promote the growth and maintenance of this duckweed in long-term culture.
Competition between invasive Lemna minuta and native L. minor in indoor and field experiments
The invasion of aquatic ecosystems by introduced invasive alien species (IAS) has become a worldwide phenomenon, and often leads to competitive interactions with native species. At high-nutrient levels, native species mostly are outcompeted by the introduced species. We performed an outdoor competition experiment between IAS free-floating Lemna minuta and native Lemna minor in a eutrophicated pond to examine whether the invasive species is the better competitor. We additionally performed an indoor experiment resembling mesotrophic phosphorus (P) conditions to investigate both species’ competitiveness in low P availability and compared with previous experiments at high-nutrient levels. Our results showed that in field conditions, the alien L. minuta was the better competitor. In the mesotrophic indoor condition, however, the native L. minor was the better competitor. Both species produced longer roots in the indoor experiment compared to field conditions. The species’ relative growth rates were also lower in the indoor experiment. A P reduction to mesotrophic condition in the water column thus might reduce invasive L. minuta growth and competitive performance. Additionally, introduction and recovery of L. minor could reduce L. minuta cover, but only following P reduction. Field experiments in mesotrophic ponds are needed to confirm these indoor findings.
Historical data reveal power‐law dispersal patterns of invasive aquatic species
Understanding how invasive species spread is of particular concern in the current era of globalisation and rapid environmental change. The occurrence of super‐diffusive movements within the context of Lévy flights has been discussed with respect to particle physics, human movements, microzooplankton, disease spread in global epidemiology and animal foraging behaviour. Super‐diffusive movements provide a theoretical explanation for the rapid spread of organisms and disease, but their applicability to empirical data on the historic spread of organisms has rarely been tested. This study focuses on the role of long‐distance dispersal in the invasion dynamics of aquatic invasive species across three contrasting areas and spatial scales: open ocean (north‐east Atlantic), enclosed sea (Mediterranean) and an island environment (Ireland). Study species included five freshwater plant species, Azolla filiculoides, Elodea canadensis, Lagarosiphon major, Elodea nuttallii and Lemna minuta; and ten species of marine algae, Asparagopsis armata, Antithamnionella elegans, Antithamnionella ternifolia, Codium fragile, Colpomenia peregrina, Caulerpa taxifolia, Dasysiphonia sp., Sargassum muticum, Undaria pinnatifida and Womersleyella setacea. A simulation model is constructed to show the validity of using historical data to reconstruct dispersal kernels. Lévy movement patterns similar to those previously observed in humans and wild animals are evident in the re‐constructed dispersal pattern of invasive aquatic species. Such patterns may be widespread among invasive species and could be exacerbated by further development of trade networks, human travel and environmental change. These findings have implications for our ability to predict and manage future invasions, and improve our understanding of the potential for spread of organisms including infectious diseases, plant pests and genetically modified organisms.