Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
235
result(s) for
"Leucine-rich sequence"
Sort by:
Olfactory marker protein contains a leucine-rich domain in the Ω-loop important for nuclear export
by
Nakashima, Noriyuki
,
Nakashima, Akiko
,
Nakashima, Kie
in
Active Transport, Cell Nucleus
,
Alanine
,
Antibodies
2022
Olfactory marker protein (OMP) is a cytosolic protein expressed in mature olfactory receptor neurons (ORNs). OMP modulates cAMP signalling and regulates olfactory sensation and axonal targeting. OMP is a small soluble protein, and passive diffusion between nucleus and cytoplasm is expected. However, OMP is mostly situated in the cytosol and is only sparsely detected in the nuclei of a subset of ORNs, hypothalamic neurons and heterologously OMP-expressing cultured cells. OMP can enter the nucleus in association with transcription factors. However, how OMP is retained in the cytosol at rest is unclear. Because OMP is proposed to affect cell differentiation, it is important to understand how OMP is distributed between cytoplasm and nucleus. To elucidate the structural profile of OMP, we applied several bioinformatics methods to a multiple sequence alignment (MSA) of OMP protein sequences and ranked the evolutionarily conserved residues. In addition to the previously reported cAMP-binding domain, we identified a leucine-rich domain in the Ω-loop of OMP. We introduced mutations into the leucine-rich region and heterologously expressed the mutant OMP in HEK293T cells. Mutations into alanine increased the nuclear distribution of OMP quantified by immunocytochemistry and western blotting. Therefore, we concluded that OMP contains a leucine-rich domain important for nuclear transport.
Journal Article
Structural model of the dimeric Parkinson’s protein LRRK2 reveals a compact architecture involving distant interdomain contacts
by
Jagtap, Pravin Kumar Ankush
,
Schaffner, Adam
,
Gilsbach, Bernd K.
in
Amino Acid Sequence
,
Biological Sciences
,
Catalytic Domain
2016
Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein containing two catalytic domains: a Ras of complex proteins (Roc) G-domain and a kinase domain. Mutations associated with familial and sporadic Parkinson’s disease (PD) have been identified in both catalytic domains, as well as in several of its multiple putative regulatory domains. Several of these mutations have been linked to increased kinase activity. Despite the role of LRRK2 in the pathogenesis of PD, little is known about its overall architecture and how PD-linked mutations alter its function and enzymatic activities. Here, we have modeled the 3D structure of dimeric, full-length LRRK2 by combining domain-based homology models with multiple experimental constraints provided by chemical cross-linking combined with mass spectrometry, negative-stain EM, and small-angle X-ray scattering. Our model reveals dimeric LRRK2 has a compact overall architecture with a tight, multidomain organization. Close contacts between the N-terminal ankyrin and C-terminal WD40 domains, and their proximity—together with the LRR domain—to the kinase domain suggest an intramolecular mechanism for LRRK2 kinase activity regulation. Overall, our studies provide, to our knowledge, the first structural framework for understanding the role of the different domains of full-length LRRK2 in the pathogenesis of PD.
Journal Article
Evolution of NLR resistance genes with noncanonical N-terminal domains in wild tomato species
2020
Nucleotide-binding and leucine-rich repeat immune receptors (NLRs) provide resistance against diverse pathogens. To create comparative NLR resources, we conducted resistance gene enrichment sequencing (RenSeq) with single-molecule real-time sequencing of PacBio for 18 accessions in Solanaceae, including 15 accessions of five wild tomato species.
We investigated the evolution of a class of NLRs, CNLs with extended N-terminal sequences previously named Solanaceae Domain. Through comparative genomic analysis, we revealed that the extended CNLs (exCNLs) anciently emerged in the most recent common ancestor between Asterids and Amaranthaceae, far predating the Solanaceae family.
In tomatoes, the exCNLs display exceptional modes of evolution in a clade-specific manner. In the clade G3, exCNLs have substantially elongated their N-termini through tandem duplications of exon segments. In the clade G1, exCNLs have evolved through recent proliferation and sequence diversification. In the clade G6, an ancestral exCNL has lost its N-terminal domains in the course of evolution.
Our study provides high-quality NLR gene models for close relatives of domesticated tomatoes that can serve as a useful resource for breeding and molecular engineering for disease resistance. Our findings regarding the exCNLs offer unique backgrounds and insights for future functional studies of the NLRs.
Journal Article
In Vitro CRISPR/Cas9-Directed Gene Editing to Model LRRK2 G2019S Parkinson’s Disease in Common Marmosets
2020
Leucine-rich repeat kinase 2 (LRRK2) G2019S is a relatively common mutation, associated with 1–3% of Parkinson’s disease (PD) cases worldwide. G2019S is hypothesized to increase LRRK2 kinase activity. Dopaminergic neurons derived from induced pluripotent stem cells of PD patients carrying LRRK2 G2019S are reported to have several phenotypes compared to wild type controls, including increased activated caspase-3 and reactive oxygen species (ROS), autophagy dysfunction, and simplification of neurites. The common marmoset is envisioned as a candidate nonhuman primate species for comprehensive modeling of genetic mutations. Here, we report our successful use of CRISPR/Cas9 with repair template-mediated homology directed repair to introduce the LRRK2 G2019S mutation, as well as a truncation of the LRRK2 kinase domain, into marmoset embryonic and induced pluripotent stem cells. We found that, similar to humans, marmoset LRRK2 G2019S resulted in elevated kinase activity. Phenotypic evaluation after dopaminergic differentiation demonstrated LRRK2 G2019S-mediated increased intracellular ROS, decreased neuronal viability, and reduced neurite complexity. Importantly, these phenotypes were not observed in clones with LRRK2 truncation. These results demonstrate the feasibility of inducing monogenic mutations in common marmosets and support the use of this species for generating a novel genetic-based model of PD that expresses physiological levels of LRRK2 G2019S.
Journal Article
leucine-rich repeat structure
by
Lovell, S. C
,
Bella, J
,
Hindle, K. L
in
Amino Acid Sequence
,
amino acid sequences
,
Amino acids
2008
The leucine-rich repeat is a widespread structural motif of 20-30 amino acids with a characteristic repetitive sequence pattern rich in leucines. Leucine-rich repeat domains are built from tandems of two or more repeats and form curved solenoid structures that are particularly suitable for protein-protein interactions. Thousands of protein sequences containing leucine-rich repeats have been identified by automatic annotation methods. Three-dimensional structures of leucine-rich repeat domains determined to date reveal a degree of structural variability that translates into the considerable functional versatility of this protein superfamily. As the essential structural principles become well established, the leucine-rich repeat architecture is emerging as an attractive framework for structural prediction and protein engineering. This review presents an update of the current understanding of leucine-rich repeat structure at the primary, secondary, tertiary and quaternary levels and discusses specific examples from recently determined three-dimensional structures.
Journal Article
A multilayered regulatory mechanism for the autoinhibition and activation of a plant CC-NB-LRR resistance protein with an extra N-terminal domain
2016
The tomato resistance protein Sw-5b differs from the classical coiled-coil nucleotide-binding leucine-rich repeat (CC-NB-LRR) resistance proteins by having an extra N-terminal domain (NTD). To understand how NTD, CC and NB-LRR regulate autoinhibition and activation of Sw-5b, we dissected the function(s) of each domain.
When viral elicitor was absent, Sw-5b LRR suppressed the central NB-ARC to maintain autoinhibition of the NB-LRR segment. The CC and NTD domains independently and additively enhanced the autoinhibition of NB-LRR.
When viral elicitor was present, the NB-LRR segment of Sw-5b was specifically activated to trigger a hypersensitive response. Surprisingly, Sw-5b CC suppressed the activation of NBLRR, whereas the extra NTD of Sw-5b became a positive regulator and fully activated the resistance protein, probably by relieving the inhibitory effects of the CC. In infection assays of transgenic plants, the NB-LRR segment alone was insufficient to confer resistance against Tomato spotted wilt tospovirus; the layers of NTD and CC regulation on NB-LRR were required for Sw-5b to confer resistance.
Based on these findings, we propose that, to counter the negative regulation of the CC on NB-LRR, Sw-5b evolved an extra NTD to coordinate with the CC, thus developing a multilayered regulatory mechanism to control autoinhibition and activation.
Journal Article
LRRK2 maintains mitochondrial homeostasis and regulates innate immune responses to Mycobacterium tuberculosis
2020
The Parkinson’s disease (PD)-associated gene leucine-rich repeat kinase 2 (LRRK2) has been studied extensively in the brain. However, several studies have established that mutations in LRRK2 confer susceptibility to mycobacterial infection, suggesting LRRK2 also controls immunity. We demonstrate that loss of LRRK2 in macrophages induces elevated basal levels of type I interferon (IFN) and interferon stimulated genes (ISGs) and causes blunted interferon responses to mycobacterial pathogens and cytosolic nucleic acid agonists. Altered innate immune gene expression in Lrrk2 knockout (KO) macrophages is driven by a combination of mitochondrial stresses, including oxidative stress from low levels of purine metabolites and DRP1-dependent mitochondrial fragmentation. Together, these defects promote mtDNA leakage into the cytosol and chronic cGAS engagement. While Lrrk2 KO mice can control Mycobacterium tuberculosis (Mtb) replication, they have exacerbated inflammation and lower ISG expression in the lungs. These results demonstrate previously unappreciated consequences of LRRK2-dependent mitochondrial defects in controlling innate immune outcomes.
Parkinson’s disease is a progressive nervous system disorder that causes tremors, slow movements, and stiff and inflexible muscles. The symptoms are caused by the loss of cells known as neurons in a specific part of the brain that helps to regulate how the body moves.
Researchers have identified mutations in several genes that are associated with an increased risk of developing Parkinson’s. The most common of these mutations occur in a gene called LRRK2. This gene produces a protein that has been shown to be important for maintaining cellular compartments known as mitochondria, which play a crucial role in generating energy. It remains unclear how these mutations lead to the death of neurons.
Mutations in LRRK2 have also been shown to make individuals more susceptible to bacterial infections, suggesting that the protein that LRRK2 codes for may help our immune system. Weindel, Bell et al. set out to understand how this protein works in immune cells called macrophages, which ‘eat’ invading bacteria and produce type I interferons, molecules that promote immune responses. Mouse cells were used to measure the ability of normal macrophages and macrophages that lack the mouse equivalent to LRRK2 (referred to as Lrrk2 knockout macrophages) to make type I interferons.
The experiments showed that the Lrrk2 knockout macrophages made type I interferons even when they were not infected with bacteria, suggesting they are subject to stress that triggers immune responses. It was possible to correct the behavior of the Lrrk2 knockout macrophages by repairing their mitochondria. When mice missing the gene equivalent to LRRK2 were infected with the bacterium that causes tuberculosis, they experienced more severe disease.
The protein encoded by the LRRK2 gene is considered a potential target for therapies to treat Parkinson’s disease, and several drugs that inhibit this protein are being tested in clinical trials. The findings of Weindel, Bell et al. suggest that these drugs may have unintended negative effects on a patient’s ability to fight infection. This work also indicates that LRRK2 mutations may disrupt immune responses in the brain, where macrophage-like cells called microglia play a crucial role in maintaining healthy neurons. Future studies that examine how mutations in LRRK2 affect microglia may help us understand how Parkinson’s disease develops.
Journal Article
Pleiotropic effects for Parkin and LRRK2 in leprosy type-1 reactions and Parkinson’s disease
by
Tao, Shao
,
Cobat, Aurélie
,
Lettre, Guillaume
in
Amino acid sequence
,
Amino acids
,
Biological Sciences
2019
Type-1 reactions (T1R) are pathological inflammatory episodes and main contributors to nerve damage in leprosy. Here, we evaluate the genewise enrichment of rare protein-altering variants in 7 genes where common variants were previously associated with T1R. We selected 474 Vietnamese leprosy patients of which 237 were T1R-affected and 237 were T1R-free matched controls. Genewise enrichment of nonsynonymous variants was tested with both kernel-based (sequence kernel association test [SKAT]) and burden methods. Of the 7 genes tested 2 showed statistical evidence of association with T1R. For the LRRK2 gene an enrichment of nonsynonymous variants was observed in T1R-free controls (P
SKAT-O = 1.6 × 10−4). This genewise association was driven almost entirely by the gain-of-function variant R1628P (P = 0.004; odds ratio = 0.29). The second genewise association was found for the Parkin coding gene PRKN (formerly PARK2) where 7 rare variants were enriched in T1R-affected cases (P
SKAT-O = 7.4 × 10−5). Mutations in both PRKN and LRRK2 are known causes of Parkinson’s disease (PD). Hence, we evaluated to what extent such rare amino acid changes observed in T1R are shared with PD. We observed that amino acids in Parkin targeted by nonsynonymous T1R-risk mutations were also enriched for mutations implicated in PD (P = 1.5 × 10−4). Hence, neuroinflammation in PD and peripheral nerve damage due to inflammation in T1R share overlapping genetic control of pathogenicity.
Journal Article
Two Adjacent Nucleotide-Binding Site–Leucine-Rich Repeat Class Genes Are Required to Confer Pikm-Specific Rice Blast Resistance
by
Yano, Masahiro
,
Yamane, Hiroko
,
Matsumoto, Takashi
in
Amino Acid Sequence
,
Apoptosis
,
binding proteins
2008
The rice blast resistance gene Pikm was cloned by a map-based cloning strategy. High-resolution genetic mapping and sequencing of the gene region in the Pikm-containing cultivar Tsuyuake narrowed down the candidate region to a 131-kb genomic interval. Sequence analysis predicted two adjacently arranged resistance-like genes, Pikm1-TS and Pikm2-TS, within this candidate region. These genes encoded proteins with a nucleotide-binding site (NBS) and leucine-rich repeats (LRRs) and were considered the most probable candidates for Pikm. However, genetic complementation analysis of transgenic lines individually carrying these two genes negated the possibility that either Pikm1-TS or Pikm2-TS alone was Pikm. Instead, it was revealed that transgenic lines carrying both of these genes expressed blast resistance. The results of the complementation analysis and an evaluation of the resistance specificity of the transgenic lines to blast isolates demonstrated that Pikm-specific resistance is conferred by cooperation of Pikm1-TS and Pikm2-TS. Although these two genes are not homologous with each other, they both contain all the conserved motifs necessary for an NBS–LRR class gene to function independently as a resistance gene.
Journal Article