Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
2,984 result(s) for "Leukemia, B-Cell - metabolism"
Sort by:
New insights into pre-BCR and BCR signalling with relevance to B cell malignancies
Key Points Transformation of early B cells supplants the role of interleukin-7 receptor (IL-7R) and pre-B cell receptor (BCR) signalling. Continual BCR signalling is required for the propagation of many B cell malignancies. The transcription factor forkhead box protein O1 (FOXO1) and the B cell linker protein BLNK have distinct roles in early B cells versus peripheral B cells. The crucial BCR signalling pathways regulated by phosphoinsoitide 3-kinase (PI3K), spleen tyrosine kinase (SYK) and Bruton tyrosine kinase (BTK) are valid therapeutic targets for B cell chronic lymphocytic leukaemia (B-CLL) and B cell non-Hodgkin's lymphoma (B-NHL). Signalling via the BCR is modulated by additional receptors responding to microenvironmental cues. In this Review, the key signalling pathways that lie downstream of the pre-B cell receptor (BCR) and the BCR are discussed in terms of their contribution to B cell homeostasis and neoplasia, with a focus on the emerging distinctions between tonic and chronic active signalling. The B cell receptor (BCR) and its precursor (pre-BCR) control B cell homeostasis, differentiation and function. Moreover, aberrant pre-BCR and BCR signalling have a central role in B cell neoplasia; for example, enhanced positive signalling or disrupted negative signalling downstream of the pre-BCR promotes B cell acute lymphocytic leukaemia. The emerging distinctions between tonic and chronic active BCR signalling have contributed to the identification of oncogenic targets downstream of BCR signalling in mature B cell neoplasms. Indeed, the encouraging results of several ongoing clinical trials that target the activity of phosphoinositide 3-kinase δ-isoform (PI3Kδ), Bruton tyrosine kinase (BTK) or spleen tyrosine kinase (SYK) downstream of the BCR highlight the therapeutic potential of inhibiting BCR signalling.
Targeting CD10 on B-Cell Leukemia Using the Universal CAR T-Cell Platform (UniCAR)
Chimeric antigen receptor (CAR)-expressing T-cells are without a doubt a breakthrough therapy for hematological malignancies. Despite their success, clinical experience has revealed several challenges, which include relapse after targeting single antigens such as CD19 in the case of B-cell acute lymphoblastic leukemia (B-ALL), and the occurrence of side effects that could be severe in some cases. Therefore, it became clear that improved safety approaches, and targeting multiple antigens, should be considered to further improve CAR T-cell therapy for B-ALL. In this paper, we address both issues by investigating the use of CD10 as a therapeutic target for B-ALL with our switchable UniCAR system. The UniCAR platform is a modular platform that depends on the presence of two elements to function. These include UniCAR T-cells and the target modules (TMs), which cross-link the T-cells to their respective targets on tumor cells. The TMs function as keys that control the switchability of UniCAR T-cells. Here, we demonstrate that UniCAR T-cells, armed with anti-CD10 TM, can efficiently kill B-ALL cell lines, as well as patient-derived B-ALL blasts, thereby highlighting the exciting possibility for using CD10 as an emerging therapeutic target for B-cell malignancies.
Role of Bruton’s tyrosine kinase in B cells and malignancies
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR). More recently, small-molecule inhibitors of this kinase have shown excellent anti-tumor activity, first in animal models and subsequently in clinical studies. In particular, the orally administered irreversible BTK inhibitor ibrutinib is associated with high response rates in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and mantle-cell lymphoma (MCL), including patients with high-risk genetic lesions. Because ibrutinib is generally well tolerated and shows durable single-agent efficacy, it was rapidly approved for first-line treatment of patients with CLL in 2016. To date, evidence is accumulating for efficacy of ibrutinib in various other B cell malignancies. BTK inhibition has molecular effects beyond its classic role in BCR signaling. These involve B cell-intrinsic signaling pathways central to cellular survival, proliferation or retention in supportive lymphoid niches. Moreover, BTK functions in several myeloid cell populations representing important components of the tumor microenvironment. As a result, there is currently a considerable interest in BTK inhibition as an anti-cancer therapy, not only in B cell malignancies but also in solid tumors. Efficacy of BTK inhibition as a single agent therapy is strong, but resistance may develop, fueling the development of combination therapies that improve clinical responses. In this review, we discuss the role of BTK in B cell differentiation and B cell malignancies and highlight the importance of BTK inhibition in cancer therapy.
Diagnostic Usefulness and Prognostic Impact of CD200 Expression in Lymphoid Malignancies and Plasma Cell Myeloma
The membrane glycoprotein MRC OX-2 (CD200) is expressed in several lymphoid malignancies. However, the diagnostic usefulness and potential prognostic importance of CD200 expression have not been rigorously examined. We show that CD200 is uniformly expressed in chronic lymphocytic leukemia (CLL) and absent in mantle cell lymphoma (MCL). It is important to note that expression of CD200 is retained even in CLLs with immunophenotypic aberrancies, making CD200 a particularly useful marker for discrimination between these cases and MCL. CD200 is expressed in nearly all precursor B-lymphoblastic leukemias, with aberrant overexpression or underexpression compared with normal B-cell progenitors in 55% of cases. More than 70% of plasma cell myelomas (PCMs) expressed CD200, and loss of CD200 expression in PCM may be associated with more clinically aggressive disease. CD200 is expressed in several hematolymphoid neoplasms. Analysis of its expression has several diagnostic and potentially prognostic applications in the flow cytometric evaluation of lymphoid malignancies.
CAR T-cells that target acute B-lineage leukemia irrespective of CD19 expression
Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrate remarkable efficacy in treating B-lineage acute lymphoblastic leukemia (BL-ALL), yet up to 39% of treated patients relapse with CD19(−) disease. We report that CD19(−) escape is associated with downregulation, but preservation, of targetable expression of CD20 and CD22. Accordingly, we reasoned that broadening the spectrum of CD19CAR T-cells to include both CD20 and CD22 would enable them to target CD19(−) escape BL-ALL while preserving their upfront efficacy. We created a CD19/20/22-targeting CAR T-cell by coexpressing individual CAR molecules on a single T-cell using one tricistronic transgene. CD19/20/22CAR T-cells killed CD19(−) blasts from patients who relapsed after CD19CAR T-cell therapy and CRISPR/Cas9 CD19 knockout primary BL-ALL both in vitro and in an animal model, while CD19CAR T-cells were ineffective. At the subcellular level, CD19/20/22CAR T-cells formed dense immune synapses with target cells that mediated effective cytolytic complex formation, were efficient serial killers in single-cell tracking studies, and were as efficacious as CD19CAR T-cells against primary CD19(+) disease. In conclusion, independent of CD19 expression, CD19/20/22CAR T-cells could be used as salvage or front-line CAR therapy for patients with recalcitrant disease.
NKX6-3 in B-Cell Progenitor Differentiation and Leukemia
Early B-cell development is primarily regulated at the transcriptional level and comprises the consecutive differentiation stages B-cell progenitor, pro-B-cell and pre-B-cell. These entities provide the cells of origin in B-cell precursor acute lymphoid leukemia (BCP-ALL) that show aberrations of developmental transcription factors (TFs), representing major oncogenic drivers. Analysis of physiological TFs in these developmental entities helps us to understand their normal and disturbed activities and regulatory connections. Here, we focused on NKL-subclass homeodomain TF NKX6-3, which is active in both normal B-cell progenitors and TCF3::PBX1 fusion gene-positive BCP-ALL cases. By performing siRNA-mediated knockdown and forced expression experiments in BCP-ALL model cell lines, we established a gene regulatory network for NKX6-3 together with TALE-class homeodomain TFs IRX1 and MEIS1, as well as ETS-TF SPIB. Importantly, NKX6-3 was activated by TCF3::PBX1, underlying their co-expression in BCP-ALL. Furthermore, comparative expression profiling analysis of public BCP-ALL patient data revealed TGFb-pathway in-hibitor CD109 as a downregulated target gene of NKX6-3. TGFb-signalling, in turn, enhanced NKX6-3 expression, indicating mutual activation. Finally, RNA-seq analysis of BCP-ALL cell line RCH-ACV after NKX6-3 knockdown revealed MPP7 as an upregulated target gene of both NKX6-3 and TCF3::PBX1, revealing a role for the HIPPO-pathway in B-cell progenitors and TCF3::PBX1-positive BCP-ALL. Collectively, our data introduce novel players and regulatory connections to normal and aberrant TF-networks in B-cell progenitors to serve as potential diagnostic markers or therapeutic targets.
Thermal- and Oxidative Stress Causes Enhanced Release of NKG2D Ligand-Bearing Immunosuppressive Exosomes in Leukemia/Lymphoma T and B Cells
Immune evasion from NK surveillance related to inadequate NK-cell function has been suggested as an explanation of the high incidence of relapse and fatal outcome of many blood malignancies. In this report we have used Jurkat and Raji cell lines as a model for studies of the NKG2D receptor-ligand system in T-and B cell leukemia/lymphoma. Using real-time quantitative RT-PCR and immunoflow cytometry we show that Jurkat and Raji cells constitutively express mRNA and protein for the stress-inducible NKG2D ligands MICA/B and ULBP1 and 2, and up-regulate the expression in a cell-line specific and stress-specific manner. Furthermore, we revealed by electron microscopy, immunoflow cytometry and western blot that these ligands were expressed and secreted on exosomes, nanometer-sized microvesicles of endosomal origin. Acting as a decoy, the NKG2D ligand-bearing exosomes downregulate the in vitro NKG2D receptor-mediated cytotoxicity and thus impair NK-cell function. Interestingly, thermal and oxidative stress enhanced the exosome secretion generating more soluble NKG2D ligands that aggravated the impairment of the cytotoxic response. Taken together, our results might partly explain the clinically observed NK-cell dysfunction in patients suffering from leukemia/lymphoma. The adverse effect of thermal and oxidative stress, enhancing the release of immunosuppressive exosomes, should be considered when cytostatic and hyperthermal anti-cancer therapies are designed.
VLA-4 Expression and Activation in B Cell Malignancies: Functional and Clinical Aspects
Lineage commitment and differentiation of hematopoietic cells takes place in well-defined microenvironmental surroundings. Communication with other cell types is a vital prerequisite for the normal functions of the immune system, while disturbances in this communication support the development and progression of neoplastic disease. Integrins such as the integrin very late antigen-4 (VLA-4; CD49d/CD29) control the localization of healthy as well as malignant B cells within the tissue, and thus determine the patterns of organ infiltration. Malignant B cells retain some key characteristics of their normal counterparts, with B cell receptor (BCR) signaling and integrin-mediated adhesion being essential mediators of tumor cell homing, survival and proliferation. It is thus not surprising that targeting the BCR pathway using small molecule inhibitors has proved highly effective in the treatment of B cell malignancies. Attenuation of BCR-dependent lymphoma–microenvironment interactions was, in this regard, described as a main mechanism critically contributing to the efficacy of these agents. Here, we review the contribution of VLA-4 to normal B cell differentiation on the one hand, and to the pathophysiology of B cell malignancies on the other hand. We describe its impact as a prognostic marker, its interplay with BCR signaling and its predictive role for novel BCR-targeting therapies, in chronic lymphocytic leukemia and beyond.
Signalling input from divergent pathways subverts B cell transformation
Malignant transformation of cells typically involves several genetic lesions, whose combined activity gives rise to cancer 1 . Here we analyse 1,148 patient-derived B-cell leukaemia (B-ALL) samples, and find that individual mutations do not promote leukaemogenesis unless they converge on one single oncogenic pathway that is characteristic of the differentiation stage of transformed B cells. Mutations that are not aligned with this central oncogenic driver activate divergent pathways and subvert transformation. Oncogenic lesions in B-ALL frequently mimic signalling through cytokine receptors at the pro-B-cell stage (via activation of the signal-transduction protein STAT5) 2 – 4 or pre-B-cell receptors in more mature cells (via activation of the protein kinase ERK) 5 – 8 . STAT5- and ERK-activating lesions are found frequently, but occur together in only around 3% of cases ( P  = 2.2 × 10 −16 ). Single-cell mutation and phospho-protein analyses reveal the segregation of oncogenic STAT5 and ERK activation to competing clones. STAT5 and ERK engage opposing biochemical and transcriptional programs that are orchestrated by the transcription factors MYC and BCL6, respectively. Genetic reactivation of the divergent (suppressed) pathway comes at the expense of the principal oncogenic driver and reverses transformation. Conversely, deletion of divergent pathway components accelerates leukaemogenesis. Thus, persistence of divergent signalling pathways represents a powerful barrier to transformation, while convergence on one principal driver defines a central event in leukaemia initiation. Pharmacological reactivation of suppressed divergent circuits synergizes strongly with inhibition of the principal oncogenic driver. Hence, reactivation of divergent pathways can be leveraged as a previously unrecognized strategy to enhance treatment responses. Analysis of B-cell leukaemia samples reveals that oncogenic mutations do not cause malignant transformation unless they converge on the same signalling pathway, and that it may be possible clinically to combine inhibition of the principal oncogenic driver with reactivation of divergent pathways.