Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Life (Biology) Encyclopedias, Juvenile"
Sort by:
Hepatopancreas transcriptome analyses provide new insights into the molecular regulatory mechanism of fast ovary maturation in Macrobrachium nipponense
Background Macrobrachium nipponense is an economically and ecologically important freshwater prawn that is widely farmed in China. In contrast to other species of marine shrimp, M. nipponense has a short sexual maturity period, resulting in not only high stocking densities, but also a reduced survival rate and increased risk of hypoxia. Therefore, there is an urgent need to study the molecular mechanisms underlying fast ovary maturation in this species . Results Comparative transcriptome analysis was performed using hepatopancreatic tissue from female M. nipponense across five ovarian maturation stages to explore differentially expressed genes and pathways involved in ovarian maturation. In total, 118.01 Gb of data were generated from 15 transcriptomes. Approximately 90.46% of clean reads were mapped from the M. nipponense reference genome. A comprehensive comparative analysis between successive ovarian maturation stages generated 230–5814 differentially expressed genes. Gene Ontology (GO) enrichment was highly concentrated in the “biological process” category in all four comparison groups, and mainly focused on energy synthesis and accumulation, energy decomposition and transport. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results showed that, among 20 significantly enriched KEGG pathways, nine were involved in the synthesis, degradation, and metabolism of carbohydrates, lipids, and other nutrient intermediates, suggesting that the hepatopancreas has an important role in energy supply during ovarian maturation. Furthermore, the “Insect hormone biosynthesis” pathway was found to have a dominant role in the development of the ovary from immaturity to maturity, supporting the hypothesis that ecdysteroid- and juvenile hormone-signaling pathways have an important role in hepatopancreas regulation of ovarian maturation. Conclusion Taken together, this study sheds light on the role of the hepatopancreas in the molecular regulation of ovary maturation in M. nipponense . The present study provided new insights for understanding the mechanisms of reproductive regulation in crustaceans.
Transcriptome analysis of female western flower thrips, Frankliniella occidentalis, exhibiting neo-panoistic ovarian development
The western flower thrips, Frankliniella occidentalis , is one of the most devastating insect pests with explosive reproductive potential. However, its reproductive physiological processes are not well understood. This study reports the ovarian development and associated transcriptomes of F . occidentalis . Each ovary consisted of four ovarioles, each of which contained a maximum of nine follicles in the vitellarium. The germarium consisted of several dividing cells forming a germ cell cluster, presumably consisting of oocytes and nurse cells. The nurse cells were restricted to the germarium while the subsequent follicles did not possess nurse cells or a nutritive cord, supporting the neo-panoistic ovariole usually found in thysanopteran insects. Oocyte development was completed 72 h after adult emergence (AAE). Transcriptome analysis was performed at mid (36 h AAE) and late (60 h AAE) ovarian developmental stages using RNA sequencing (RNASeq) technology. More than 120 million reads per replication were matched to ≈ 15,000 F . occidentalis genes. Almost 500 genes were differentially expressed at each of the mid and late ovarian developmental stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that these differentially expressed genes (DEGs) were associated with metabolic pathways along with protein and nucleic acid biosynthesis. In both ovarian developmental stages, vitellogenin, mucin, and chorion genes were highly (> 8-fold) expressed. Endocrine signals associated with ovarian development were further investigated from the DEGs. Insulin and juvenile hormone signals were upregulated only at 36 h AAE, whereas the ecdysteroid signal was highly maintained at 60 h AAE. This study reports the transcriptome associated with the ovarian development of F . occidentalis , which possesses a neo-panoistic ovariole.
Physiological, metabolomic, and transcriptomic reveal metabolic pathway alterations in Gymnocypris przewalskii due to cold exposure
Teleost fish have evolved various adaptations that allow them to tolerate cold water conditions. However, the underlying mechanism of this adaptation is poorly understood in Tibetan Plateau fish. RNA-seq combined with liquid chromatography‒mass spectrometry (LC‒MS/MS) metabolomics was used to investigate the physiological responses of a Tibetan Plateau-specific teleost, Gymnocypris przewalskii , under cold conditions. The 8-month G. przewalskii juvenile fish were exposed to cold (4 ℃, cold acclimation, CA) and warm (17 ℃, normal temperature, NT) temperature water for 15 days. Then, the transcript profiles of eight tissues, including the brain, gill, heart, intestine, hepatopancreas, kidney, muscle, and skin, were evaluated by transcriptome sequencing. The metabolites of the intestine, hepatopancreas, and muscle were identified by LC‒MS/MS. A total of 5,745 differentially expressed genes (DEGs) were obtained in the CA group. The key DEGs were annotated using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The DEGs from the eight tissues were significantly enriched in spliceosome pathways, indicating that activated alternative splicing is a critical biological process that occurs in the tissues to help fish cope with cold stress. Additionally, 82, 97, and 66 differentially expressed metabolites were identified in the intestine, hepatopancreas, and muscle, respectively. Glutathione metabolism was the only overlapping significant pathway between the transcriptome and metabolome analyses in these three tissues, indicating that an activated antioxidative process was triggered during cold stress. In combination with the multitissue transcriptome and metabolome, we established a physiology-gene‒metabolite interaction network related to energy metabolism during cold stress and found that gluconeogenesis and long-chain fatty acid metabolism played critical roles in glucose homeostasis and energy supply.
Application of Weighted Gene Coexpression Network Analysis to Identify Key Modules and Hub Genes in Systemic Juvenile Idiopathic Arthritis
Systemic juvenile idiopathic arthritis (sJIA) is a severe autoinflammatory disorder with a still not clearly defined molecular mechanism. To better understand the disease, we used scattered datasets from public domains and performed a weighted gene coexpression network analysis (WGCNA) to identify key modules and hub genes underlying sJIA pathogenesis. Two gene expression datasets, GSE7753 and GSE13501, were used to construct the WGCNA. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to the genes and hub genes in the sJIA modules. Cytoscape was used to screen and visualize the hub genes. We further compared the hub genes with the genome-wide association study (GWAS) genes and used a consensus WGCNA to verify that our conclusions were conservative and reproducible across multiple independent datasets. A total of 5,414 genes were obtained for WGCNA, from which highly correlated genes were divided into 17 modules. The red module demonstrated the highest correlation with the sJIA module (r=0.8, p=3e−29), whereas the green-yellow module was found to be closely related to the non-sJIA module (r=0.62, p=1e−14). Functional enrichment analysis demonstrated that the red module was mostly enriched in the activation of immune responses, infection, nucleosomes, and erythrocytes, and the green-yellow module was mostly enriched in immune responses and inflammation. Additionally, the hub genes in the red module were highly enriched in erythrocyte differentiation, including ALAS2, AHSP, TRIM10, TRIM58, and KLF1. The hub genes from the green-yellow module were mainly associated with immune responses, as exemplified by the genes KLRB1, KLRF1, CD160, and KIRs. We identified sJIA-related modules and several hub genes that might be associated with the development of sJIA. Particularly, the modules may help understand the mechanisms of sJIA, and the hub genes may become biomarkers and therapeutic targets of sJIA in the future.
The dynamic of the potential pathogenic bacteria, antibiotic-resistant bacteria, and antibiotic resistance genes in the water at different growth stages of grass carp pond
Pond aquaculture has become the most important and broadest breeding model in China, and an extremely important source of aquatic products, but the potential hazard factors of potential pathogenic bacteria (PPB), antibiotic resistance bacteria (ARB), and antibiotic resistance genes (ARGs) in aquaculture environment are largely invisible. In the present study, the bacterial communities in the larvae, juvenile, rearing, and harvesting culture stages of great grass carp ( Ctenopharyngodon idellus ) ponds were investigated and the structure of microbial flora analysis showed that the larvae culture stage has the highest abundance and the most dominant phyla were Proteobacteria (27.8%). A total of 123 significant Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotations and the relative abundance of nine bacterial phenotypes implied that the larvae culture stage had the most abundance of pathogenic potential and mobile elements. The correlation analyses of environmental factors showed that temperature, stocking density, pH, and transparency showed the significant impacts on both the distribution of microbiome and the PPB. More importantly, a total of 40 ARB were identified, and 16 ARGs have the detection rates of 100%, which revealed that they are widely distributed and highly enriched in the aquaculture production. Notably, this is the first robust report to analyze and understand the PPB, ARB, and ARGs characteristics and dynamic changes in the pond aquaculture.
Configuration of Gut Microbiota Structure and Potential Functionality in Two Teleosts under the Influence of Dietary Insect Meals
Insect meals are considered promising, eco-friendly, alternative ingredients for aquafeed. Considering the dietary influence on establishment of functioning gut microbiota, the effect of the insect meal diets on the microbial ecology should be addressed. The present study assessed diet- and species-specific shifts in gut resident bacterial communities of juvenile reared Dicentrarchus labrax and Sparus aurata in response to three experimental diets with insect meals from three insects (Hermetia illucens, Tenebrio molitor, Musca domestica), using high-throughput Illumina sequencing of the V3–V4 region of the 16S rRNA gene. The dominant phyla were Firmicutes, Proteobacteria and Actinobacteria in all dietary treatments. Anaerococcus sp., Cutibacterium sp. and Pseudomonas sp. in D. labrax, and Staphylococcus sp., Hafnia sp. and Aeromonas sp. in S. aurata were the most enriched shared species, following insect-meal inclusion. Network analysis of the dietary treatments highlighted diet-induced changes in the microbial community assemblies and revealed unique and shared microbe-to-microbe interactions. PICRUSt-predicted Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly differentiated, including genes associated with metabolic pathways. The present findings strengthen the importance of diet in microbiota configuration and underline that different insects as fish feed ingredients elicit species-specific differential responses of structural and functional dynamics in gut microbial communities.
Effects of hypoxia on the heart of the juvenile four-finger threadfin (Eleutheronema tetradactylum) based on physiological indicators and transcriptome analysis
This study evaluated the effects of hypoxia on the heart of juvenile four-finger threadfin ( Eleutheronema tetradactylum ) through physiological and transcriptome analysis. Juveniles with an average weight of 122.82 g and length of 24.60 cm were used. Hypoxia significantly increased serum myocardial enzyme activities, including creatine kinase (CK), creatine kinase-MB isoenzyme, lactate dehydrogenase (LDH), and α-hydroxybutyrate dehydrogenase (HDBH). These indicators initially rose and then declined, reflecting cardiac stress and suggesting their potential as early hypoxia biomarkers for real-time aquaculture monitoring. Histological analysis revealed structural damage in myocardial fibers under hypoxia, with increasing severity over time. This underscores the need to minimize oxygen fluctuations to prevent cardiac tissue degeneration. Transcriptome analysis identified upregulated genes involved in cell communication, immune responses, and intracellular signaling, offering potential targets for breeding hypoxia-tolerant species. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis highlighted key pathways such as mitogen-activated protein kinase (MAPK), hypoxia-inducible factor-1 (HIF-1), endocytosis, and phagosome formation. The MAPK pathway plays a critical role in cellular stress responses, including survival, proliferation, and apoptosis. Hypoxia-induced activation of MAPKs like ERK, JNK, and p38 regulates stress-responsive genes. HIF-1 signaling regulates oxygen homeostasis, with HIF-1α stabilizing hypoxia-responsive genes such as VEGFA, which promotes vascular remodeling and enhances oxygen delivery. These findings collectively offer practical applications for enhancing aquaculture management, such as monitoring biochemical markers, adopting hypoxia-tolerant breeding, and adjusting environmental conditions to mitigate stress, ensuring better productivity and sustainability. This research provides a foundation for further studies on the molecular mechanisms of hypoxia stress in aquaculture species.
Transcriptome Analysis of Juvenile Black Rockfish Sebastes schlegelii under Air Exposure Stress
The study aimed to uncover the molecular response of juvenile Sebastes schlegelii to air exposure stress by identifying differentially expressed genes (DEGs) that may underlie their anti-stress mechanisms. Juvenile Sebastes schlegelii were subjected to varying durations of air exposure stress. The total RNA was extracted from whole tissues and sequenced using the Illumina NovaSeq 6000 platform. The transcriptome data were analyzed to identify DEGs through pairwise comparisons across a control group and two experimental groups exposed to air for 40 s and 2 min 30 s, respectively. The comparative DEG analysis revealed a significant number of transcripts responding to air exposure stress. Specifically, 5173 DEGs were identified in the 40 s exposure group (BS) compared to the control (BC), 6742 DEGs in the 2 min 30 s exposure group (BD) compared to the control (BC), and 2653 DEGs when comparing the BD to the BS group. Notably, Gene Ontology (GO) analysis showed an enrichment of DEGs associated with peptidase activity and extracellular regions, suggesting a role in the organism’s stress response. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis pointed to the involvement of metabolic pathways, which are crucial for energy management under stress. The upregulation of protein digestion and absorption pathways may indicate a physiological adaptation to nutrient scarcity during stress. Additionally, the identification of antibiotic biosynthesis pathways implies a potential role in combating stress-induced infections or damage. The identified DEGs and enriched pathways provide insights into the complex anti-stress response mechanisms in juvenile Sebastes schlegelii. The enrichment of peptidase activity and extracellular region-related genes may reflect the initiation of tissue repair and immune response following air exposure. The connection between protein digestion and absorption pathways and anti-stress capabilities could be interpreted as a metabolic readjustment to prioritize energy-efficient processes and nutrient assimilation during stress. The role of antibiotic biosynthesis pathways suggests a defensive mechanism against oxidative stress or microbial invasion that might occur with air exposure.
Combined proteomic and metabolomic studies on the liver of Amur sturgeon Acipenser schrenckii under titanium dioxide nanoparticle exposure
Nanomaterials, particularly titanium dioxide nanoparticles (TiO 2 -NPs), are extensively utilized across various industries. However, their environmental release has raised concerns regarding their potential ecological and environmental impacts. The reproductive toxicity of TiO 2 -NPs in fish species has attracted considerable attention, yet conflicting research outcomes have been reported. We investigated the effects of TiO 2 -NPs exposure on the liver of juvenile Amur sturgeon Acipenser schrenckii using label-free proteomic and untargeted metabolomic analyses. The experiment included a control group and three groups exposed to different concentrations of TiO 2 -NPs (low, TL; medium, TM; high, TH). Compared to the control group, 9, 19, and 25 proteins and 35, 73, and 158 metabolites were differentially expressed in the TH, TM, and TL TiO 2 -NP-exposed groups, respectively. The differentially expressed genes (DEGs) were enriched in the Kyoto Encyclopedia for Genes and Genomes (KEGG) pathways related to glycolysis and gluconeogenesis. Moreover, among the 126 correlated proteins, the most enriched pathways were associated with endocytosis and protein processing in the endoplasmic reticulum. Notably, syringic acid was significantly downregulated across all three TiO 2 -NP-exposed groups. To obtain a comprehensive overview of the TiO 2 -NP-induced expression changes, a co-regulated network of proteins and metabolites associated with TiO 2 -NPs exposure was constructed. Exposure to TiO 2 -NPs led to enrichment and alteration of pathways related to immune responses, including endocytosis, protein processing in the endoplasmic reticulum, and peroxisome proliferator-activated receptor (PPAR) signaling. In conclusion, our findings indicate that exposure to TiO 2 -NPs might disrupt glucose metabolism and induce immune responses, thus contributing to our understanding of the environmental impacts of nanomaterials and highlighting the need for further research and development of potential mitigation strategies.
Comparative Analysis of Hepatopancreas RNA-Seq of Juvenile Grass Carp (Ctenopharyngodon idella) Fed Different Starch Diets
This study aimed to explore the effects of different starch source diets on the growth performance and hepatopancreas RNA-seq of grass carp. Juvenile grass carp (initial body weight of 39.4 ± 1.6 g) were fed diets containing 25% corn (CO), potato (PO), and wheat (WH) starch for 8 weeks, respectively. The weight gain ratio (WGR) was significantly lower, whereas the visceral somatic index (VSI) and feed conversion ratio (FCR) were significantly higher in the CO group than those in the PO and WH groups. These indicators did not significantly differ between the PO and WH groups. Hepatopancreas RNA-seq analysis showed that 536, 514, and 647 differentially expressed genes (DEGs) were screened out in the comparisons of PO vs. WH, PO vs. CO, and CO vs. WH. The DEGs were mainly enriched in the several known pathways involved in steroid biosynthesis, cell cycle, fatty acid metabolism, and fat digestion and absorption according to Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The major DEGs related to lipid and carbohydrate metabolism were analyzed, in which lipogenesis-related DEGs (fasn, acc1, scd1, elovl6, and me1), fat digestion and absorption-related DEGs (fabp7, apoa1, apoa4, and pla2), and glycometabolism-related DEGs (gk, g6pd, and pepck) were down-regulated in the PO group compared with those in the CO and WH groups. Conversely, steroid synthesis-related DEGs (hmgcs, fdft1, sqle, lss, cyp51, msmo1, nsdhl, ugt, cyp1b1, and cyp7a1) were up-regulated in the PO group. These results indicate that the long-term PO ingestion could modulate hepatic lipid metabolism by reducing fatty acid biosynthesis and increasing bile acid biosynthesis. PO may be healthier in contrast to CO alone, which may not be suitable as a starch source in grass carp diet.