Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
7,870
result(s) for
"Life Cycle Stages"
Sort by:
Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity
2021
The global decline in malaria has stalled
1
, emphasizing the need for vaccines that induce durable sterilizing immunity. Here we optimized regimens for chemoprophylaxis vaccination (CVac), for which aseptic, purified, cryopreserved, infectious
Plasmodium falciparum
sporozoites (PfSPZ) were inoculated under prophylactic cover with pyrimethamine (PYR) (Sanaria PfSPZ-CVac(PYR)) or chloroquine (CQ) (PfSPZ-CVac(CQ))—which kill liver-stage and blood-stage parasites, respectively—and we assessed vaccine efficacy against homologous (that is, the same strain as the vaccine) and heterologous (a different strain) controlled human malaria infection (CHMI) three months after immunization (
https://clinicaltrials.gov/
, NCT02511054 and NCT03083847). We report that a fourfold increase in the dose of PfSPZ-CVac(PYR) from 5.12 × 10
4
to 2 × 10
5
PfSPZs transformed a minimal vaccine efficacy (low dose, two out of nine (22.2%) participants protected against homologous CHMI), to a high-level vaccine efficacy with seven out of eight (87.5%) individuals protected against homologous and seven out of nine (77.8%) protected against heterologous CHMI. Increased protection was associated with Vδ2 γδ T cell and antibody responses. At the higher dose, PfSPZ-CVac(CQ) protected six out of six (100%) participants against heterologous CHMI three months after immunization. All homologous (four out of four) and heterologous (eight out of eight) infectivity control participants showed parasitaemia. PfSPZ-CVac(CQ) and PfSPZ-CVac(PYR) induced a durable, sterile vaccine efficacy against a heterologous South American strain of
P. falciparum
, which has a genome and predicted CD8 T cell immunome that differs more strongly from the African vaccine strain than other analysed African
P. falciparum
strains.
Two malaria vaccines comprising
Plasmodium falciparum
sporozoites and treatment with either pyrimethamine or chloroquine induced durable protective responses against both the African vaccine strain and a heterologous South American strain of
P. falciparum
.
Journal Article
Parasites resistant to the antimalarial atovaquone fail to transmit by mosquitoes
by
Toyama, Tomoko
,
Matsuoka, Hiroyuki
,
Mollard, Vanessa
in
Animals
,
Anopheles - parasitology
,
Antimalarials - pharmacology
2016
Drug resistance compromises control of malaria. Here, we show that resistance to a commonly used antimalarial medication, atovaquone, is apparently unable to spread. Atovaquone pressure selects parasites with mutations in cytochrome b, a respiratory protein with low but essential activity in the mammalian blood phase of the parasite life cycle. Resistance mutations rescue parasites from the drug but later prove lethal in the mosquito phase, where parasites require full respiration. Unable to respire efficiently, resistant parasites fail to complete mosquito development, arresting their life cycle. Because cytochrome b is encoded by the maternally inherited parasite mitochondrion, even outcrossing with wild-type strains cannot facilitate spread of resistance. Lack of transmission suggests that resistance will be unable to spread in the field, greatly enhancing the utility of atovaquone in malaria control.
Journal Article
Knockout silkworms reveal a dispensable role for juvenile hormones in holometabolous life cycle
2015
Insect juvenile hormones (JHs) prevent precocious metamorphosis and allow larvae to undergo multiple rounds of status quo molts. However, the roles of JHs during the embryonic and very early larval stages have not been fully understood. We generated and characterized knockout silkworms (Bombyx mori) with null mutations in JH biosynthesis or JH receptor genes using genome-editing tools. We found that embryonic growth and morphogenesis are largely independent of JHs inBombyxand that, even in the absence of JHs or JH signaling, pupal characters are not formed in first- or second-instar larvae, and precocious metamorphosis is induced after the second instar at the earliest. We also show by mosaic analysis that a pupal specifier genebroad, which is dramatically up-regulated in the late stage of the last larval instar, is essential for pupal commitment in the epidermis. Importantly, the mRNA expression level ofbroad, which is thought to be repressed by JHs, remained at very low basal levels during the early larval instars of JH-deficient or JH signaling-deficient knockouts. Therefore, our study suggests that the long-accepted paradigm that JHs maintain the juvenile status throughout larval life should be revised because the larval status can be maintained by a JH-independent mechanism in very early larval instars. We propose that the lack of competence for metamorphosis during the early larval stages may result from the absence of an unidentifiedbroad-inducing factor, i.e., a competence factor.
Journal Article
Rapid turnover of life-cycle-related genes in the brown algae
by
Cock, J. Mark
,
Cormier, Alexandre
,
Peters, Akira F.
in
Algae
,
Animal Genetics and Genomics
,
Biochemistry, Molecular Biology
2019
Background
Sexual life cycles in eukaryotes involve a cyclic alternation between haploid and diploid phases. While most animals possess a diploid life cycle, many plants and algae alternate between multicellular haploid (gametophyte) and diploid (sporophyte) generations. In many algae, gametophytes and sporophytes are independent and free-living and may present dramatic phenotypic differences. The same shared genome can therefore be subject to different, even conflicting, selection pressures during each of the life cycle generations. Here, we analyze the nature and extent of genome-wide, generation-biased gene expression in four species of brown algae with contrasting levels of dimorphism between life cycle generations.
Results
We show that the proportion of the transcriptome that is generation-specific is broadly associated with the level of phenotypic dimorphism between the life cycle stages. Importantly, our data reveals a remarkably high turnover rate for life-cycle-related gene sets across the brown algae and highlights the importance not only of co-option of regulatory programs from one generation to the other but also of a role for newly emerged, lineage-specific gene expression patterns in the evolution of the gametophyte and sporophyte developmental programs in this major eukaryotic group. Moreover, we show that generation-biased genes display distinct evolutionary modes, with gametophyte-biased genes evolving rapidly at the coding sequence level whereas sporophyte-biased genes tend to exhibit changes in their patterns of expression.
Conclusion
Our analysis uncovers the characteristics, expression patterns, and evolution of generation-biased genes and underlines the selective forces that shape this previously underappreciated source of phenotypic diversity.
Journal Article
A Phase 1 Trial of MSP2-C1, a Blood-Stage Malaria Vaccine Containing 2 Isoforms of MSP2 Formulated with Montanide® ISA 720
2011
In a previous Phase 1/2b malaria vaccine trial testing the 3D7 isoform of the malaria vaccine candidate Merozoite surface protein 2 (MSP2), parasite densities in children were reduced by 62%. However, breakthrough parasitemias were disproportionately of the alternate dimorphic form of MSP2, the FC27 genotype. We therefore undertook a dose-escalating, double-blinded, placebo-controlled Phase 1 trial in healthy, malaria-naïve adults of MSP2-C1, a vaccine containing recombinant forms of the two families of msp2 alleles, 3D7 and FC27 (EcMSP2-3D7 and EcMSP2-FC27), formulated in equal amounts with Montanide® ISA 720 as a water-in-oil emulsion.
The trial was designed to include three dose cohorts (10, 40, and 80 µg), each with twelve subjects receiving the vaccine and three control subjects receiving Montanide® ISA 720 adjuvant emulsion alone, in a schedule of three doses at 12-week intervals. Due to unexpected local reactogenicity and concern regarding vaccine stability, the trial was terminated after the second immunisation of the cohort receiving the 40 µg dose; no subjects received the 80 µg dose. Immunization induced significant IgG responses to both isoforms of MSP2 in the 10 µg and 40 µg dose cohorts, with antibody levels by ELISA higher in the 40 µg cohort. Vaccine-induced antibodies recognised native protein by Western blots of parasite protein extracts and by immunofluorescence microscopy. Although the induced anti-MSP2 antibodies did not directly inhibit parasite growth in vitro, IgG from the majority of individuals tested caused significant antibody-dependent cellular inhibition (ADCI) of parasite growth.
As the majority of subjects vaccinated with MSP2-C1 developed an antibody responses to both forms of MSP2, and that these antibodies mediated ADCI provide further support for MSP2 as a malaria vaccine candidate. However, in view of the reactogenicity of this formulation, further clinical development of MSP2-C1 will require formulation of MSP2 in an alternative adjuvant.
Australian New Zealand Clinical Trials Registry 12607000552482.
Journal Article
A Pilot Randomised Trial of Induced Blood-Stage Plasmodium falciparum Infections in Healthy Volunteers for Testing Efficacy of New Antimalarial Drugs
2011
Critical to the development of new drugs for treatment of malaria is the capacity to safely evaluate their activity in human subjects. The approach that has been most commonly used is testing in subjects with natural malaria infection, a methodology that may expose symptomatic subjects to the risk of ineffective treatment. Here we describe the development and pilot testing of a system to undertake experimental infection using blood stage Plasmodium falciparum parasites (BSP). The objectives of the study were to assess the feasibility and safety of induced BSP infection as a method for assessment of efficacy of new drug candidates for the treatment of P. falciparum infection.
A prospective, unblinded, Phase IIa trial was undertaken in 19 healthy, malaria-naïve, male adult volunteers who were infected with BSP and followed with careful clinical and laboratory observation, including a sensitive, quantitative malaria PCR assay. Volunteers were randomly allocated to treatment with either of two licensed antimalarial drug combinations, artemether-lumefantrine (A/L) or atovaquone-proguanil (A/P). In the first cohort (n = 6) where volunteers received ∼360 BSP, none reached the target parasitemia of 1,000 before the day designated for antimalarial treatment (day 6). In the second and third cohorts, 13 volunteers received 1,800 BSP, with all reaching the target parasitemia before receiving treatment (A/L, n = 6; A/P, n = 7) The study demonstrated safety in the 19 volunteers tested, and a significant difference in the clearance kinetics of parasitemia between the drugs in the 13 evaluable subjects, with mean parasite reduction ratios of 759 for A/L and 17 for A/P (95% CI 120-4786 and 7-40 respectively; p<0.01).
This system offers a flexible and safe approach to testing the in vivo activity of novel antimalarials.
ClinicalTrials.gov NCT01055002.
Journal Article
Toxoplasma gondii Cyclic AMP-Dependent Protein Kinase Subunit 3 Is Involved in the Switch from Tachyzoite to Bradyzoite Development
by
Weiss, Louis M.
,
Eaton, Michael S.
,
Murakoshi, Fumi
in
1-Methyl-3-isobutylxanthine - pharmacology
,
Animals
,
Asexual reproduction
2016
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects warm-blooded vertebrates, including humans. Asexual reproduction in T. gondii allows it to switch between the rapidly replicating tachyzoite and quiescent bradyzoite life cycle stages. A transient cyclic AMP (cAMP) pulse promotes bradyzoite differentiation, whereas a prolonged elevation of cAMP inhibits this process. We investigated the mechanism(s) by which differential modulation of cAMP exerts a bidirectional effect on parasite differentiation. There are three protein kinase A (PKA) catalytic subunits ( Tg PKAc1 to -3) expressed in T. gondii . Unlike Tg PKAc1 and Tg PKAc2, which are conserved in the phylum Apicomplexa, Tg PKAc3 appears evolutionarily divergent and specific to coccidian parasites. Tg PKAc1 and Tg PKAc2 are distributed in the cytomembranes, whereas Tg PKAc3 resides in the cytosol. Tg PKAc3 was genetically ablated in a type II cyst-forming strain of T. gondii (Pru Δku80Δhxgprt ) and in a type I strain (RH Δku80Δhxgprt ), which typically does not form cysts. The Δ pkac3 mutant exhibited slower growth than the parental and complemented strains, which correlated with a higher basal rate of tachyzoite-to-bradyzoite differentiation. 3-Isobutyl-1-methylxanthine (IBMX) treatment, which elevates cAMP levels, maintained wild-type parasites as tachyzoites under bradyzoite induction culture conditions (pH 8.2/low CO 2 ), whereas the Δ pkac3 mutant failed to respond to the treatment. This suggests that Tg PKAc3 is the factor responsible for the cAMP-dependent tachyzoite maintenance. In addition, the Δ pkac3 mutant had a defect in the production of brain cysts in vivo , suggesting that a substrate of Tg PKAc3 is probably involved in the persistence of this parasite in the intermediate host animals. IMPORTANCE Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that Tg PKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation. Toxoplasma gondii is one of the most prevalent eukaryotic parasites in mammals, including humans. Parasites can switch from rapidly replicating tachyzoites responsible for acute infection to slowly replicating bradyzoites that persist as a latent infection. Previous studies have demonstrated that T. gondii cAMP signaling can induce or suppress bradyzoite differentiation, depending on the strength and duration of cAMP signal. Here, we report that Tg PKAc3 is responsible for cAMP-dependent tachyzoite maintenance while suppressing differentiation into bradyzoites, revealing one mechanism underlying how this parasite transduces cAMP signals during differentiation.
Journal Article
The Malaria Cell Atlas
by
Reid, Adam J.
,
Billker, Oliver
,
Russell, Andrew J. C.
in
Animals
,
Anopheles - parasitology
,
Aquatic insects
2019
Several species of the parasite Plasmodium cause human malarial diseases, and, despite determined control efforts, a huge global disease burden remains. Howick et al. present a single-cell analysis of transcription across the malaria parasite life cycle (see the Perspective by Winzeler). Single-cell transcriptomes generated from 10 different life-cycle stages of the rodent-model malaria parasite P. berghei identified 20 “modules” among 5156 core transcriptome genes. These clusters enabled functional assignment of hypothetical and conserved genes, and they hint at further substructure of established life-cycle stages. The atlas also allowed for P. falciparum and P. malariae transcriptomes from patient isolates to be deconvoluted and for classification of parasitemia according to developmental stage. Science , this issue p. eaaw2619 ; see also p. 753 Single-cell methods allow precise developmental timing across the life cycles of several malaria parasite species. Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. We profiled the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire Plasmodium berghei life cycle. We then used our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access reference dataset for the study of malaria parasites.
Journal Article
biology-based approach for mixture toxicity of multiple endpoints over the life cycle
by
Jager, Tjalling
,
Kooijman, Sebastiaan A. L. M
,
De Coen, Wim M
in
Analysis
,
Animals
,
Biomarkers
2010
Typical approaches for analyzing mixture ecotoxicity data only provide a description of the data; they cannot explain observed interactions, nor explain why mixture effects can change in time and differ between endpoints. To improve our understanding of mixture toxicity we need to explore biology-based models. In this paper, we present an integrated approach to deal with the toxic effects of mixtures on growth, reproduction and survival, over the life cycle. Toxicokinetics is addressed with a one-compartment model, accounting for effects of growth. Each component of the mixture has its own toxicokinetics model, but all compounds share the effect of body size on uptake kinetics. The toxicodynamic component of the method is formed by an implementation of dynamic energy budget theory; a set of simple rules for metabolic organization that ensures conservation of mass and energy. Toxicant effects are treated as a disruption of regular metabolic processes such as an increase in maintenance costs. The various metabolic processes interact, which means that mixtures of compounds with certain mechanisms of action have to produce a response surface that deviates from standard models (such as ‘concentration addition'). Only by separating these physiological interactions from the chemical interactions between mixture components can we hope to achieve generality and a better understanding of mixture effects. For example, a biology-based approach allows for educated extrapolations to other mixtures, other species, and other exposure situations. We illustrate our method with the interpretation of partial life-cycle data for two polycyclic aromatic hydrocarbons in Daphnia magna.
Journal Article
Sexual reproduction and sex determination in green algae
2017
The sexual reproductive processes of some representative freshwater green algae are reviewed.
Chlamydomonas reinhardtii
is a unicellular volvocine alga having two mating types: mating type plus (mt
+
) and mating type minus (mt
−
), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt
+
and mt
−
mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular
Chlamydomonas reinhardtii
is conserved in the multicellular oogamous
Volvox carteri
. The sexual reproduction of the unicellular charophycean alga,
Closterium peracerosum-strigosum-littorale
complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.
Journal Article