Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
18,251
result(s) for
"Lignocellulose."
Sort by:
Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar
2019
Genetic improvement through breeding is one of the key approaches to increasing biomass supply. This paper documents the breeding progress to date for four perennial biomass crops (PBCs) that have high output–input energy ratios: namely Panicum virgatum (switchgrass), species of the genera Miscanthus (miscanthus), Salix (willow) and Populus (poplar). For each crop, we report on the size of germplasm collections, the efforts to date to phenotype and genotype, the diversity available for breeding and on the scale of breeding work as indicated by number of attempted crosses. We also report on the development of faster and more precise breeding using molecular breeding techniques. Poplar is the model tree for genetic studies and is furthest ahead in terms of biological knowledge and genetic resources. Linkage maps, transgenesis and genome editing methods are now being used in commercially focused poplar breeding. These are in development in switchgrass, miscanthus and willow generating large genetic and phenotypic data sets requiring concomitant efforts in informatics to create summaries that can be accessed and used by practical breeders. Cultivars of switchgrass and miscanthus can be seed‐based synthetic populations, semihybrids or clones. Willow and poplar cultivars are commercially deployed as clones. At local and regional level, the most advanced cultivars in each crop are at technology readiness levels which could be scaled to planting rates of thousands of hectares per year in about 5 years with existing commercial developers. Investment in further development of better cultivars is subject to current market failure and the long breeding cycles. We conclude that sustained public investment in breeding plays a key role in delivering future mass‐scale deployment of PBCs. Plant breeding links the research effort with commercial mass upscaling. The authors’ assessment of development status of the four species is shown (poplar having two: one for short rotation coppice (SRC) poplar and one for the more traditional short rotation forestry (SRF)). Mass scale deployment needs developments outside the breeding arenas to drive breeding activities more rapidly and extensively.
Journal Article
Development of ‘Lignin-First’ Approaches for the Valorization of Lignocellulosic Biomass
2020
Currently, valorization of lignocellulosic biomass almost exclusively focuses on the production of pulp, paper, and bioethanol from its holocellulose constituent, while the remaining lignin part that comprises the highest carbon content, is burned and treated as waste. Lignin has a complex structure built up from propylphenolic subunits; therefore, its valorization to value-added products (aromatics, phenolics, biogasoline, etc.) is highly desirable. However, during the pulping processes, the original structure of native lignin changes to technical lignin. Due to this extensive structural modification, involving the cleavage of the β-O-4 moieties and the formation of recalcitrant C-C bonds, its catalytic depolymerization requires harsh reaction conditions. In order to apply mild conditions and to gain fewer and uniform products, a new strategy has emerged in the past few years, named ‘lignin-first’ or ‘reductive catalytic fractionation’ (RCF). This signifies lignin disassembly prior to carbohydrate valorization. The aim of the present work is to follow historically, year-by-year, the development of ‘lignin-first’ approach. A compact summary of reached achievements, future perspectives and remaining challenges is also given at the end of the review.
Journal Article
Genomic Analysis Enlightens Agaricales Lifestyle Evolution and Increasing Peroxidase Diversity
by
Lipzen, Anna
,
Ramírez, Lucía
,
Pisabarro, Antonio G
in
Agaricales
,
Agaricomycetes
,
ancestral-sequence reconstruction
2021
Abstract
As actors of global carbon cycle, Agaricomycetes (Basidiomycota) have developed complex enzymatic machineries that allow them to decompose all plant polymers, including lignin. Among them, saprotrophic Agaricales are characterized by an unparalleled diversity of habitats and lifestyles. Comparative analysis of 52 Agaricomycetes genomes (14 of them sequenced de novo) reveals that Agaricales possess a large diversity of hydrolytic and oxidative enzymes for lignocellulose decay. Based on the gene families with the predicted highest evolutionary rates—namely cellulose-binding CBM1, glycoside hydrolase GH43, lytic polysaccharide monooxygenase AA9, class-II peroxidases, glucose–methanol–choline oxidase/dehydrogenases, laccases, and unspecific peroxygenases—we reconstructed the lifestyles of the ancestors that led to the extant lignocellulose-decomposing Agaricomycetes. The changes in the enzymatic toolkit of ancestral Agaricales are correlated with the evolution of their ability to grow not only on wood but also on leaf litter and decayed wood, with grass-litter decomposers as the most recent eco-physiological group. In this context, the above families were analyzed in detail in connection with lifestyle diversity. Peroxidases appear as a central component of the enzymatic toolkit of saprotrophic Agaricomycetes, consistent with their essential role in lignin degradation and high evolutionary rates. This includes not only expansions/losses in peroxidase genes common to other basidiomycetes but also the widespread presence in Agaricales (and Russulales) of new peroxidases types not found in wood-rotting Polyporales, and other Agaricomycetes orders. Therefore, we analyzed the peroxidase evolution in Agaricomycetes by ancestral-sequence reconstruction revealing several major evolutionary pathways and mapped the appearance of the different enzyme types in a time-calibrated species tree.
Journal Article
Pretreatment technologies for lignocellulosic biomass: Research progress, mechanisms, and prospects
2025
Lignocellulose, which consists of cellulose, hemicellulose, and lignin, has very stable properties. Among them, cellulose makes up 30% to 50% of the content, and hemicellulose makes up 20% to 43%. Cellulose and hemicellulose can be converted into fermentable sugar through saccharification, and then into bioresources through fermentation. Pretreatment methods such as high temperature and high pressure, acid and alkali cooking, enzymatic digestion can effectively decompose the lignocellulose structure, remove lignin, increase the porosity of lignocellulose, specific surface area, etc., increase the efficiency of saccharification, and improve the utilization of lignocellulose. Pretreatment is a key stage in the production process of bioresources. However, the pretreatment process produces by-products known as inhibitors such as acetic acid, furfural, and phenols. These inhibitors tend to inhibit the activity of biological enzymes, impede the saccharification of cellulose and hemicellulose, disrupt the integrity of the cell membrane of the fermenting bacteria, lead to mutation of the fermenting bacteria, and result in a decrease in the yield of the bioresource. This paper reviews recent advances in pretreatment methods, analyzes the reasons for the emergence of inhibitors, and summarizes methods to reduce the effects of inhibitors.
Journal Article
Sustainable Development of Hot-Pressed All-Lignocellulose Composites—Comparing Wood Fibers and Nanofibers
by
Oliaei, Erfan
,
Berglund, Lars A.
,
Lindström, Tom
in
biocomposite
,
Carbon footprint
,
Cellulose
2021
Low-porosity materials based on hot-pressed wood fibers or nanocellulose fibrils (no polymer matrix) represent a new concept for eco-friendly materials with interesting mechanical properties. For the replacement of fossil-based materials, physical properties of wood fiber materials need to be improved. In addition, the carbon footprint and cumulative energy required to produce the material also needs to be reduced compared with fossil-based composites, e.g., glass fiber composites. Lignin-containing fibers and nanofibers are of high yield and special interest for development of more sustainable materials technologies. The present mini-review provides a short analysis of the potential. Different extraction routes of lignin-containing wood fibers are discussed, different processing methods, and the properties of resulting fiber materials. Comparisons are made with analogous lignin-containing nanofiber materials, where mechanical properties and eco-indicators are emphasized. Higher lignin content may promote eco-friendly attributes and improve interfiber or interfibril bonding in fiber materials, for improved mechanical performance.
Journal Article
Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes
by
Levasseur, Anthony
,
Drula, Elodie
,
Henrissat, Bernard
in
Carbohydrates
,
Cellulase
,
Decomposition
2013
Doc number: 41 Abstract Background: Since its inception, the carbohydrate-active enzymes database (CAZy; http://www.cazy.org ) has described the families of enzymes that cleave or build complex carbohydrates, namely the glycoside hydrolases (GH), the polysaccharide lyases (PL), the carbohydrate esterases (CE), the glycosyltransferases (GT) and their appended non-catalytic carbohydrate-binding modules (CBM). The recent discovery that members of families CBM33 and family GH61 are in fact lytic polysaccharide monooxygenases (LPMO), demands a reclassification of these families into a suitable category. Results: Because lignin is invariably found together with polysaccharides in the plant cell wall and because lignin fragments are likely to act in concert with (LPMO), we have decided to join the families of lignin degradation enzymes to the LPMO families and launch a new CAZy class that we name \"Auxiliary Activities\" in order to accommodate a range of enzyme mechanisms and substrates related to lignocellulose conversion. Comparative analyses of these auxiliary activities in 41 fungal genomes reveal a pertinent division of several fungal groups and subgroups combining their phylogenetic origin and their nutritional mode (white vs. brown rot). Conclusions: The new class introduced in the CAZy database extends the traditional CAZy families, and provides a better coverage of the full extent of the lignocellulose breakdown machinery.
Journal Article
Bioactive compounds with antioxidant activity extracted from lignocellulosic biomass of Galium verum
by
Zbranca-Toporas, Anca
,
Turcov, Delia
,
Maxim, Claudia
in
Aging
,
Alternative energy sources
,
antioxidant
2025
The active ingredients present in Galium species, especially Galium verum, are represented by antioxidant compounds in variable proportions. This study aimed to obtain, by solid-liquid extraction of G. verum, biologically active compounds with antioxidant properties, such as polyphenols and flavonoids. Four classic extraction techniques were used (maceration-M, refluxation-R, sonoextraction-US and a combined method: sonoextraction with maceration – US+M). In the extraction process, glycerin was used in different forms: hydro-glycerin; and water and glycerin-ethanol mixtures with different concentrations. Other monitored parameters were the solid-liquid ratio (S/L) and the extraction time. The best results were obtained using the hydro-glycerin solution as extraction solvent: 85.0 µg GAE/g polyphenols (R: 50% concentration, 60 min, S/L=1:15) and 117 mg QE/g flavonoids ((R: 80% concentration, 60 min, S/L=1:15). This study brings new data about obtaining plant extracts from G. verum with important antioxidant properties, based on the use of a green solvent extraction.
Journal Article
Nanocellulose from Agricultural Wastes: Products and Applications—A Review
by
Morillas-Gutiérrez, Francisca
,
Mateo, Soledad
,
Moya, Alberto J.
in
Acids
,
Agricultural wastes
,
Biodiesel fuels
2021
The isolation of nanocellulose from different agricultural residues is becoming an important research field due to its versatile applications. This work collects different production processes, including conditioning steps, pretreatments, bleaching processes and finally purification for the production of nanocellulose in its main types of morphologies: cellulose nanofiber (CNF) and cellulose nanocrystal (CNC). This review highlights the importance of agricultural wastes in the production of nanocellulose in order to reduce environmental impact, use of fossil resources, guarantee sustainable economic growth and close the circle of resource use. Finally, the possible applications of the nanocellulose obtained as a new source of raw material in various industrial fields are discussed.
Journal Article
Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose
2014
Ionic liquids (ILs), solvents composed entirely of paired ions, have been used in a variety of process chemistry and renewable energy applications. Imidazolium-based ILs effectively dissolve biomass and represent a remarkable platform for biomass pretreatment. Although efficient, imidazolium cations are expensive and thus limited in their large-scale industrial deployment. To replace imidazolium-based ILs with those derived from renewable sources, we synthesized a series of tertiary amine-based ILs from aromatic aldehydes derived from lignin and hemicellulose, the major by-products of lignocellulosic biofuel production. Compositional analysis of switchgrass pretreated with ILs derived from vanillin, p -anisaldehyde, and furfural confirmed their efficacy. Enzymatic hydrolysis of pretreated switchgrass allowed for direct comparison of sugar yields and lignin removal between biomass-derived ILs and 1-ethyl-3-methylimidazolium acetate. Although the rate of cellulose hydrolysis for switchgrass pretreated with biomass-derived ILs was slightly slower than that of 1-ethyl-3-methylimidazolium acetate, 90–95% glucose and 70–75% xylose yields were obtained for these samples after 72-h incubation. Molecular modeling was used to compare IL solvent parameters with experimentally obtained compositional analysis data. Effective pretreatment of lignocellulose was further investigated by powder X-ray diffraction and glycome profiling of switchgrass cell walls. These studies showed different cellulose structural changes and differences in hemicellulose epitopes between switchgrass pretreatments with the aforementioned ILs. Our concept of deriving ILs from lignocellulosic biomass shows significant potential for the realization of a “closed-loop” process for future lignocellulosic biorefineries and has far-reaching economic impacts for other IL-based process technology currently using ILs synthesized from petroleum sources.
Journal Article