Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
26,927
result(s) for
"Linear algebra"
Sort by:
Practical linear algebra : a geometry toolbox
\"Practical Linear Algebra covers all the concepts in a traditional undergraduate-level linear algebra course, but with a focus on practical applications. The book develops these fundamental concepts in 2D and 3D with a strong emphasis on geometric understanding before presenting the general (n-dimensional) concept. The book does not employ a theorem/proof structure, and it spends very little time on tedious, by-hand calculations (e.g., reduction to row-echelon form), which in most job applications are performed by products such as Mathematica. Instead the book presents concepts through examples and applications. \"-- Provided by publisher.
Congruence Lattices of Ideals in Categories and (Partial) Semigroups
2023
This monograph presents a unified framework for determining the congruences on a number of monoids and categories of transformations,
diagrams, matrices and braids, and on all their ideals. The key theoretical advances present an iterative process of stacking certain
normal subgroup lattices on top of each other to successively build congruence lattices of a chain of ideals. This is applied to several
specific categories of: transformations; order/orientation preserving/reversing transformations; partitions; planar/annular partitions;
Brauer, Temperley–Lieb and Jones partitions; linear and projective linear transformations; and partial braids. Special considerations
are needed for certain small ideals, and technically more intricate theoretical underpinnings for the linear and partial braid
categories.
Optimization algorithms on matrix manifolds
2008
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on both the numerical formulation of the algorithm and its differential geometric abstraction--illustrating how good algorithms draw equally from the insights of differential geometry, optimization, and numerical analysis. Two more theoretical chapters provide readers with the background in differential geometry necessary to algorithmic development. In the other chapters, several well-known optimization methods such as steepest descent and conjugate gradients are generalized to abstract manifolds. The book provides a generic development of each of these methods, building upon the material of the geometric chapters. It then guides readers through the calculations that turn these geometrically formulated methods into concrete numerical algorithms. The state-of-the-art algorithms given as examples are competitive with the best existing algorithms for a selection of eigenspace problems in numerical linear algebra.
Tensor Decompositions and Applications
2009
This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or N-way array. Decompositions of higher-order tensors (i.e., N-way arrays with N ≥ 3) have applications in psychometrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.
Journal Article
Minimizing Communication in Numerical Linear Algebra
2011
In 1981 Hong and Kung proved a lower bound on the amount of communication (amount of data moved between a small, fast memory and large, slow memory) needed to perform dense, n-by-n matrix multiplication using the conventional O(n3) algorithm, where the input matrices were too large to fit in the small, fast memory. In 2004 Irony, Toledo, and Tiskin gave a new proof of this result and extended it to the parallel case (where communication means the amount of data moved between processors). In both cases the lower bound may be expressed as Ω(#arithmetic_operations/M), where M is the size of the fast memory (or local memory in the parallel case). Here we generalize these results to a much wider variety of algorithms, including LU factorization, Cholesky factorization, LDLT factorization, QR factorization, the Gram-Schmidt algorithm, and algorithms for eigenvalues and singular values, i.e., essentially all direct methods of linear algebra. The proof works for dense or sparse matrices and for sequential or parallel algorithms. In addition to lower bounds on the amount of data moved (bandwidth cost), we get lower bounds on the number of messages required to move it (latency cost). We extend our lower bound technique to compositions of linear algebra operations (like computing powers of a matrix) to decide whether it is enough to call a sequence of simpler optimal algorithms (like matrix multiplication) to minimize communication, or whether we can do better. We give examples of both. We also show how to extend our lower bounds to certain graph-theoretic problems. We point out recently designed algorithms that attain many of these lower bounds. [PUBLICATION ABSTRACT]
Journal Article
Matrices, Moments and Quadrature with Applications
by
Golub, Gene H
,
Meurant, Gérard
in
Algorithm
,
Basis (linear algebra)
,
Biconjugate gradient method
2009,2010
This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.
Topics in Quaternion Linear Algebra
2014
Quaternions are a number system that has become increasingly useful for representing the rotations of objects in three-dimensional space and has important applications in theoretical and applied mathematics, physics, computer science, and engineering. This is the first book to provide a systematic, accessible, and self-contained exposition of quaternion linear algebra. It features previously unpublished research results with complete proofs and many open problems at various levels, as well as more than 200 exercises to facilitate use by students and instructors. Applications presented in the book include numerical ranges, invariant semidefinite subspaces, differential equations with symmetries, and matrix equations.
Designed for researchers and students across a variety of disciplines, the book can be read by anyone with a background in linear algebra, rudimentary complex analysis, and some multivariable calculus. Instructors will find it useful as a complementary text for undergraduate linear algebra courses or as a basis for a graduate course in linear algebra. The open problems can serve as research projects for undergraduates, topics for graduate students, or problems to be tackled by professional research mathematicians. The book is also an invaluable reference tool for researchers in fields where techniques based on quaternion analysis are used.
Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems
2011
We consider linear systems $A(\\alpha) x(\\alpha) = b(\\alpha)$ depending on possibly many parameters $\\alpha = (\\alpha_1,\\ldots,\\alpha_p)$. Solving these systems simultaneously for a standard discretization of the parameter range would require a computational effort growing drastically with the number of parameters. We show that a much lower computational effort can be achieved for sufficiently smooth parameter dependencies. For this purpose, computational methods are developed that benefit from the fact that $x(\\alpha)$ can be well approximated by a tensor of low rank. In particular, low-rank tensor variants of short-recurrence Krylov subspace methods are presented. Numerical experiments for deterministic PDEs with parametrized coefficients and stochastic elliptic PDEs demonstrate the effectiveness of our approach.
Journal Article
THE SOLUTION PATH OF THE GENERALIZED LASSO
2011
We present a path algorithm for the generalized lasso problem. This problem penalizes the ℓ 1 norm of a matrix D times the coefficient vector, and has a wide range of applications, dictated by the choice of D. Our algorithm is based on solving the dual of the generalized lasso, which greatly facilitates computation of the path. For D = I (the usual lasso), we draw a connection between our approach and the well-known LARS algorithm. For an arbitrary D, we derive an unbiased estimate of the degrees of freedom of the generalized lasso fit. This estimate turns out to be quite intuitive in many applications.
Journal Article
Further Results for Perron–Frobenius Theorem for Nonnegative Tensors
2010
We give further results on the Perron-Frobenius theorem for tensors, generalize other theorems from matrices to tensors, and give an equivalent condition for nonnegative irreducible tensors. [PUBLICATION ABSTRACT]
Journal Article