Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
153
result(s) for
"Lipid Droplets - immunology"
Sort by:
Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer
by
Kagan, Valerian E.
,
Veglia, Filippo
,
Klein-Seetharaman, Judith
in
631/250/21/1293
,
631/67/580
,
631/67/580/1884
2017
Cross-presentation is a critical function of dendritic cells (DCs) required for induction of antitumor immune responses and success of cancer immunotherapy. It is established that tumor-associated DCs are defective in their ability to cross-present antigens. However, the mechanisms driving these defects are still unknown. We find that impaired cross-presentation in DCs is largely associated with defect in trafficking of peptide–MHC class I (pMHC) complexes to the cell surface. DCs in tumor-bearing hosts accumulate lipid bodies (LB) containing electrophilic oxidatively truncated (ox-tr) lipids. These ox-tr-LB, but not LB present in control DCs, covalently bind to chaperone heat shock protein 70. This interaction prevents the translocation of pMHC to cell surface by causing the accumulation of pMHC inside late endosomes/lysosomes. As a result, tumor-associated DCs are no longer able to stimulate adequate CD8 T cells responses. In conclusion, this study demonstrates a mechanism regulating cross-presentation in cancer and suggests potential therapeutic avenues.
Tumor-associated dendritic cells are defective in their ability to cross-present antigens, and they accumulate lipid bodies. Here the authors show that this defect is due to an impaired trafficking of peptide-MHC class I caused by the interaction of electrophilic lipids with chaperone heat shock protein 70.
Journal Article
Intracellular lipid droplet accumulation occurs early following viral infection and is required for an efficient interferon response
2021
Lipid droplets (LDs) are increasingly recognized as critical organelles in signalling events, transient protein sequestration and inter-organelle interactions. However, the role LDs play in antiviral innate immune pathways remains unknown. Here we demonstrate that induction of LDs occurs as early as 2 h post-viral infection, is transient and returns to basal levels by 72 h. This phenomenon occurs following viral infections, both in vitro and in vivo. Virally driven in vitro LD induction is type-I interferon (IFN) independent, and dependent on Epidermal Growth Factor Receptor (EGFR) engagement, offering an alternate mechanism of LD induction in comparison to our traditional understanding of their biogenesis. Additionally, LD induction corresponds with enhanced cellular type-I and -III IFN production in infected cells, with enhanced LD accumulation decreasing viral replication of both Herpes Simplex virus 1 (HSV-1) and Zika virus (ZIKV). Here, we demonstrate, that LDs play vital roles in facilitating the magnitude of the early antiviral immune response specifically through the enhanced modulation of IFN following viral infection, and control of viral replication. By identifying LDs as a critical signalling organelle, this data represents a paradigm shift in our understanding of the molecular mechanisms which coordinate an effective antiviral response.
Lipid droplets (LDs) are recognized as dynamic organelles and scaffolding platforms to regulate signalling cascades. Here, Monson et al. provide evidence that LDs are involved in regulation of an early antiviral immune response specifically through the enhanced modulation of IFN following viral infection in vitro and in vivo.
Journal Article
Lipid droplet hijacking by intracellular pathogens
2017
Lipid droplets were long considered to be simple storage structures, but they have recently been shown to be dynamic organelles involved in diverse biological processes, including emerging roles in innate immunity. Various intracellular pathogens, including viruses, bacteria, and parasites, specifically target host lipid droplets during their life cycle. Viruses such as hepatitis C, dengue, and rotaviruses use lipid droplets as platforms for assembly. Bacteria, such as mycobacteria and Chlamydia, and parasites, such as trypanosomes, use host lipid droplets for nutritional purposes. The possible use of lipid droplets by intracellular pathogens, as part of an anti‐immunity strategy, is an intriguing question meriting further investigation in the near future.
Journal Article
Breast Milk: A Source of Functional Compounds with Potential Application in Nutrition and Therapy
2021
Breast milk is an unbeatable food that covers all the nutritional requirements of an infant in its different stages of growth up to six months after birth. In addition, breastfeeding benefits both maternal and child health. Increasing knowledge has been acquired regarding the composition of breast milk. Epidemiological studies and epigenetics allow us to understand the possible lifelong effects of breastfeeding. In this review we have compiled some of the components with clear functional activity that are present in human milk and the processes through which they promote infant development and maturation as well as modulate immunity. Milk fat globule membrane, proteins, oligosaccharides, growth factors, milk exosomes, or microorganisms are functional components to use in infant formulas, any other food products, nutritional supplements, nutraceuticals, or even for the development of new clinical therapies. The clinical evaluation of these compounds and their commercial exploitation are limited by the difficulty of isolating and producing them on an adequate scale. In this work we focus on the compounds produced using milk components from other species such as bovine, transgenic cattle capable of expressing components of human breast milk or microbial culture engineering.
Journal Article
Lipid Droplet, a Key Player in Host-Parasite Interactions
by
Bozza, Patricia T.
,
Oliveira, Karina da Silva
,
Maya-Monteiro, Clarissa Menezes
in
Animals
,
Antigen Presentation
,
Biosynthesis
2018
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Journal Article
Metabolic and immune-sensitive contacts between lipid droplets and endoplasmic reticulum reconstituted in vitro
by
Singh, Jagjeet
,
Kamerkar, Sukrut
,
Kumar, Mukesh
in
Animals
,
Biological Sciences
,
Cell Biology
2022
Coordinated cell function requires a variety of subcellular organelles to exchange proteins and lipids across physical contacts that are also referred to as membrane contact sites. Such organelle-to-organelle contacts also evoke interest because they can appear in response to metabolic changes, immune activation, and possibly other stimuli. The microscopic size and complex, crowded geometry of these contacts, however, makes them difficult to visualize, manipulate, and understand inside cells. To address this shortcoming, we deposited endoplasmic reticulum (ER)-enriched microsomes purified from rat liver or from cultured cells on a coverslip in the form of a proteinaceous planar membrane. We visualized real-time lipid and protein exchange across contacts that form between this ER-mimicking membrane and lipid droplets (LDs) purified from the liver of rat. The high-throughput imaging possible in this geometry reveals that in vitro LD–ER contacts increase dramatically when the metabolic state is changed by feeding the animal and also when the immune system is activated. Contact formation in both cases requires Rab18 GTPase and phosphatidic acid, thus revealing common molecular targets operative in two very different biological pathways. An optical trap is used to demonstrate physical tethering of individual LDs to the ER-mimicking membrane and to estimate the strength of this tether. These methodologies can potentially be adapted to understand and target abnormal contact formation between different cellular organelles in the context of neurological and metabolic disorders or pathogen infection.
Journal Article
Astrocytic lipid droplets contain MHCII and may act as cogs in the antigen presentation machinery
by
Sehlin, Dag
,
Rostami, Jinar
,
Erlandsson, Anna
in
Adaptive immunity
,
Advertising executives
,
Aged
2025
Lipid droplets (LDs) are crucial for energy homeostasis, but are also involved in a wide spectrum of other cellular processes. Accumulating data identifies LDs as an important player in inflammation. However, the underlying mechanisms and the impact of LDs on neuroinflammation remain unclear. Here, we describe a novel function of LDs in human astrocytes, in the context of Alzheimer’s disease (AD). Although, the overall lipid profile was unchanged in astrocytes with AD pathology, our data show a clear effect on LD metabolism and specific fatty acids involved in neuroinflammation. Importantly, we found astrocytes to be in close contact with infiltrating CD4 + T cells in the AD brain. Moreover, PLIN3 + LDs in astrocytes co-localize with major histocompatibility complex II (MHCII), indicating a role of LDs in adaptive immunity. Comprehensive analysis of human induced pluripotent stem cell (hiPSC)-derived astrocytes revealed that MHCII is in fact loaded within PLIN3 + LDs and forwarded to neighboring cells via tunneling nanotubes and secretion. Notably, the MHCII molecules are cleaved into its active form prior to packing, indicating an alternative route of MHCII shuttling through LDs, transporting functional immune complexes between cells. Quantification of PLIN3 + LDs in astrocytic cultures, human brain tissue and cerebral organoids indicates that AD pathology initially stimulates PLIN3 + LD formation, but in the long-run results in PLIN3 + LD consumption, which may have consequences on the astrocytes’ MHCII distribution capacity. Taken together, our findings present a novel function of PLIN3 + LDs that can be of relevance for AD and other inflammatory conditions.
Journal Article
Interaction Between Microglial Lipid Droplet Metabolism and Immune Polarisation After Stroke: Mechanisms and Therapeutic Prospects
2025
The interaction between lipid droplet (LD) metabolism and immune polarisation of microglia after stroke plays a key role in the regulation of neuroinflammation and tissue repair. This review analysed the molecular mechanism, spatiotemporal specificity, and the dual role of the LD metabolism-immune axis in microglia after stroke. Microglial LDs can dynamically store neutral lipids and regulate the metabolite-immune network, playing a protective role in the early stage of stroke by isolating pro-inflammatory precursors, inhibiting oxidative stress and iron death, and maintaining energy buffer. Spatiotemporal analysis revealed significant heterogeneity in the distribution and function of LDs across different stages of stroke and in distinct brain areas (infarct core, peri-infarct region, and non-infarct area), directly correlating with the pro-inflammatory/anti-inflammatory phenotypic transformation of microglia. The development of LD-related biomarkers (such as near-infrared imaging), the repurpose of peroxisome proliferator-activated receptor γ agonists (rosiglitazone) and HDAC inhibitors (volinostat), as well as the design of novel drugs (such as Triggering Receptor Expressed on Myeloid Cells 2 agonists and perilipin 2 small interfering RNA) are expected to improve stroke outcomes by transforming metabolic homeostasis and immune balance. Multi-omics technology and intelligent delivery system should be combined to overcome the limitations of the blood-brain barrier, promote the clinical transformation of the “metabolism-immunity” collaborative intervention strategy, and provide a new paradigm for precision treatment of stroke.
Journal Article
Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus
by
Sorgine, Marcos H. Ferreira
,
Barletta, Ana Beatriz Ferreira
,
Sim, Shuzhen
in
14/34
,
14/63
,
38/39
2016
In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that
Aedes aegypti
Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with
Enterobacter cloacae
, Sindbis and Dengue viruses. Microarray analysis of Aag2 challenged with
E.cloacae
or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to
Serratia marcescens
and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in
Ae. Aegypti,
and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism.
Journal Article
A novel role for lipid droplets in the organismal antibacterial response
2012
We previously discovered histones bound to cytosolic lipid droplets (LDs); here we show that this forms a cellular antibacterial defense system. Sequestered on droplets under normal conditions, in the presence of bacterial lipopolysaccharide (LPS) or lipoteichoic acid (LTA), histones are released from the droplets and kill bacteria efficiently in vitro. Droplet-bound histones also function in vivo: when injected into Drosophila embryos lacking droplet-bound histones, bacteria grow rapidly. In contrast, bacteria injected into embryos with droplet-bound histones die. Embryos with droplet-bound histones displayed more than a fourfold survival advantage when challenged with four different bacterial species. Our data suggests that this intracellular antibacterial defense system may function in adult flies, and also potentially in mice. Histones are proteins found in large numbers in most animal cells, where their primary job is to help DNA strands fold into compact and robust structures inside the nucleus. In vitro, histones are very effective at killing bacteria, and there is some evidence that histones secreted from cells provide protection against bacteria living outside cells. However, many types of bacteria are able to enter cells, where they can avoid the immune system and go on to replicate. In principle histones could protect cells against such bacteria from the inside, but for many years this was thought to be unlikely because most histones are bound to DNA strands in the cell nucleus, whereas the bacteria replicate in the cytosol. Moreover, free histones can be extremely damaging to cells, so most species have developed mechanisms to detect and degrade free histones in the cytosol. Recently, however, it was discovered that histones can bind to lipid droplets—organelles in the cytosol that are primarily used to store energy—in various animal cells and tissues. Now, Anand et al. have demonstrated that histones bound to lipid droplets can protect cells against bacteria without causing any of the harm normally associated with the presence of free histones. In in vitro experiments with lipid droplets purified from Drosophila embryos, they showed that histones bound to lipid droplets could be released to kill bacteria. The histones were released by lipopolysaccharide or lipoteichoic acid produced by the bacteria. The effect was also observed in vivo: using four different bacterial species, Anand et al. injected similar numbers of bacteria into Drosophila embryos that contained histones bound to lipid droplets, and also into embryos that had been genetically modified so that they did not contain such droplet-bound histones. While most of the normal embryos survived, the vast majority of the embryos without droplet-bound histones died. Similar results were also found in experiments on adult flies, along with evidence which suggests that histones might also provide defenses against bacteria in mice.
Journal Article