Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
38,348
result(s) for
"Lipopolysaccharide"
Sort by:
Plasma Levels of Soluble CD14 Independently Predict Mortality in HIV Infection
2011
Background. Chronic human immunodeficiency virus (HIV) infection is associated with intestinal permeability and microbial translocation that contributes to systemic immune activation, which is an independent predictor of HIV disease progression. The association of microbial translocation with clinical outcome remains unknown. Methods. This nested case-control study included 74 subjects who died, 120 of whom developed cardiovascular disease and 81 of whom developed AIDS during the Strategies for Management of Anti-Retroviral Therapy (SMART) study with matched control subjects. Intestinal fatty acid binding protein (I-FABP), lipopolysaccharide (LPS), soluble CD14 (sCD14), endotoxin core antibody (EndoCAb), and 16S ribosomal DNA (rDNA) were measured in baseline plasma samples. Results. Subjects with the highest quartile of sCD14 levels had a 6-fold higher risk of death than did those in the lowest quartile (95% confidence interval, 2.2-16.1; P<. 001), with minimal change after adjustment for inflammatory markers, CD4⁺ T cell count, and HIV RNA level. No other marker was significantly associated with clinical outcomes. I-FABP, LPS, and sCD14 were increased and EndoCAb was decreased in study subjects, compared with healthy volunteers. sCD14 level correlated with levels of IL-6, C-reactive protein, serum amyloid A and D-dimer. Conclusions. sCD14, a marker of monocyte response to LPS, is an independent predictor of mortality in HIV infection. Therapeutic attenuation of innate immune activation may improve survival in patients with HIV infection.
Journal Article
Structural basis for endotoxin neutralisation and anti-inflammatory activity of thrombin-derived C-terminal peptides
2018
Thrombin-derived C-terminal peptides (TCPs) of about 2 kDa are present in wounds, where they exert anti-endotoxic functions. Employing a combination of nuclear magnetic resonance spectroscopy (NMR), biophysical, mass spectrometry and cellular studies combined with in silico multiscale modelling, we here determine the bound conformation of HVF18 (HVFRLKKWIQKVIDQFGE), a TCP generated by neutrophil elastase, in complex with bacterial lipopolysaccharide (LPS) and define a previously undisclosed interaction between TCPs and human CD14. Further, we show that TCPs bind to the LPS-binding hydrophobic pocket of CD14 and identify the peptide region crucial for TCP interaction with LPS and CD14. Taken together, our results demonstrate the role of structural transitions in LPS complex formation and CD14 interaction, providing a molecular explanation for the previously observed therapeutic effects of TCPs in experimental models of bacterial sepsis and endotoxin shock.
Thrombin-derived C-terminal peptides (TCPs) have anti-endotoxic functions in wounds by binding to bacterial lipopolysaccharide (LPS) and Gram-negative bacteria. Here authors use a spectrum of biophysical techniques to determine the conformation of a TCP in complex with LPS and define the interaction between TCPs and CD14.
Journal Article
Leptospiral LPS escapes mouse TLR4 internalization and TRIF‑associated antimicrobial responses through O antigen and associated lipoproteins
by
Germon, Pierre
,
Santecchia, Ignacio
,
LPS-BioSciences ; Université Paris-Sud - Paris 11 (UP11)
in
Adaptor Proteins, Vesicular Transport - genetics
,
Adaptor Proteins, Vesicular Transport - metabolism
,
Animals
2020
Leptospirosis is a worldwide re-emerging zoonosis caused by pathogenic Leptospira spp. All vertebrate species can be infected; humans are sensitive hosts whereas other species, such as rodents, may become long-term renal carrier reservoirs. Upon infection, innate immune responses are initiated by recognition of Microbial Associated Molecular Patterns (MAMPs) by Pattern Recognition Receptors (PRRs). Among MAMPs, the lipopolysaccha-ride (LPS) is recognized by the Toll-Like-Receptor 4 (TLR4) and activates both the MyD88-dependent pathway at the plasma membrane and the TRIF-dependent pathway after TLR4 internalization. We previously showed that leptospiral LPS is not recognized by the human-TLR4, whereas it signals through mouse-TLR4 (mTLR4), which mediates mouse resistance to acute leptospirosis. However, although resistant, mice are known to be chronically infected by leptospires. Interestingly, the leptospiral LPS has low endotoxicity in mouse cells and is an agonist of TLR2, the sensor for bacterial lipoproteins. Here, we investigated the signaling properties of the leptospiral LPS in mouse macrophages. Using confocal micros-copy and flow cytometry, we showed that the LPS of L. interrogans did not induce internali-zation of mTLR4, unlike the LPS of Escherichia coli. Consequently, the LPS failed to induce the production of the TRIF-dependent nitric oxide and RANTES, both important antimicro-bial responses. Using shorter LPS and LPS devoid of TLR2 activity, we further found this mTLR4-TRIF escape to be dependent on both the co-purifying lipoproteins and the full-length O antigen. Furthermore, our data suggest that the O antigen could alter the binding of the leptospiral LPS to the co-receptor CD14 that is essential for TLR4-TRIF activation. Overall , we describe here a novel leptospiral immune escape mechanism from mouse macro-phages and hypothesize that the LPS altered signaling could contribute to the stealthiness and chronicity of the leptospires in mice.
Journal Article
Endothelial TLR4 and the microbiome drive cerebral cavernous malformations
2017
Cerebral cavernous malformations (CCMs) are a cause of stroke and seizure for which no effective medical therapies yet exist. CCMs arise from the loss of an adaptor complex that negatively regulates MEKK3–KLF2/4 signalling in brain endothelial cells, but upstream activators of this disease pathway have yet to be identified. Here we identify endothelial Toll-like receptor 4 (TLR4) and the gut microbiome as critical stimulants of CCM formation. Activation of TLR4 by Gram-negative bacteria or lipopolysaccharide accelerates CCM formation, and genetic or pharmacologic blockade of TLR4 signalling prevents CCM formation in mice. Polymorphisms that increase expression of the
TLR4
gene or the gene encoding its co-receptor CD14 are associated with higher CCM lesion burden in humans. Germ-free mice are protected from CCM formation, and a single course of antibiotics permanently alters CCM susceptibility in mice. These studies identify unexpected roles for the microbiome and innate immune signalling in the pathogenesis of a cerebrovascular disease, as well as strategies for its treatment.
Lipopolysaccharide derived from gut bacteria can accelerate the formation of cerebral cavernous malformations by activating TLR4 on endothelial cells, and polymorphisms that increase expression of the genes encoding TLR4 or its co-receptor CD14 are associated with higher CCM lesion burden in humans.
Microbiome driven cerebral malformations
Cerebral cavernous malformations (CCMs) are malformations of the vascular system, seen mainly in the brain where they can cause haemorrhagic stroke and seizures. CCMs arise from loss-of-function mutations in components of a complex that negatively regulates MEKK3–KLF2/4 signalling and Rho/ROCK signalling in brain endothelial cells. Mark Kahn and colleagues now identify upstream regulators that activate this pathway in brain endothelial cells. They find that lipopolysaccharide derived from gut bacteria can accelerate CCM formation by activating TLR4 on endothelial cells. The authors further show that polymorphisms in the
TLR4
gene or
CD14
, the gene encoding its co-receptor, are associated with higher CCM lesion burden in humans. These findings suggest that the gut microbiome and TLR4 are important drivers of CCMs and represent potential therapeutic targets.
Journal Article
Antiinflammatory and ROS Suppressive Effects of the Addition of Fiber to a High-Fat High-Calorie Meal
by
Abuaysheh, Sanaa
,
Makdissi, Antoine
,
Ghanim, Husam
in
Adult
,
Arteriosclerosis
,
Blood Glucose - drug effects
2017
Background:Fiber intake is associated with a reduction in the occurrence of cardiovascular events and diabetes.Objective:To investigate whether the addition of fiber to a high-fat, high-calorie (HFHC) meal prevents proinflammatory changes induced by the HFHC meal.Design:Ten normal fasting subjects consumed an HFHC meal with or without an additional 30 g of insoluble dietary fiber on 2 separate visits. Blood samples were collected over 5 hours, and mononuclear cells (MNCs) were isolated.Results:Fiber addition to the HFHC meal significantly lowered glucose excursion in the first 90 minutes and increased insulin and C-peptide secretion throughout the 5-hour follow-up period compared with the meal alone. The HFHC meal induced increases in lipopolysaccharide (LPS) concentrations, MNC reactive oxygen species generation, and the expression of interleukin (IL)-1β, tumor necrosis factor α (TNF-α), Toll-like receptor (TLR)-4, and CD14. The addition of fiber prevented an increase in LPS and significantly reduced the increases in ROS generation and the expression of IL-1β, TNF-α, TLR-4, and CD14. In addition, the meal increased Suppressor of cytokine signaling (SOCS)-3 and protein tyrosine phosphatase 1B (PTP-1B) messenger RNA and protein levels, which were inhibited when fiber was added.Conclusions:The addition of fiber to a proinflammatory HFHC meal had beneficial anti-inflammatory and metabolic effects. Thus, the fiber content of the American Heart Association meal may contribute to its noninflammatory nature. If these actions of dietary fiber are sustained following long-term intake, they may contribute to fiber’s known benefits in the prevention of insulin resistance, type 2 diabetes, and atherosclerosis.We studied the effects of the addition of fiber to a high-fat meal, and we found that fiber suppressed meal-induced inflammation and oxidative stress.
Journal Article
Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial
by
Klammer, Carmen
,
Heinzl, Matthias
,
Dieplinger, Benjamin
in
Acids
,
Administration, Intravenous
,
Adolescent
2021
Background
Administration of lipopolysaccharide (LPS) from Gram-negative bacteria, also known as the human endotoxemia model, is a standardized and safe model of human inflammation. Experimental studies have revealed that peripheral administration of LPS leads to induction of the kynurenine pathway followed by depressive-like behavior and cognitive dysfunction in animals. The aim of the present study is to investigate how acute intravenous LPS administration affects the kynurenine pathway in healthy male human subjects.
Methods
The present study is a prospective, single-blinded, randomized, placebo-controlled cross-over study to investigate the effects of intravenously administered LPS (Escherichia coli O113, 2 ng/kg) on tryptophan and kynurenine metabolites over 48 h and their association with interleukin-6 (IL-6) and C-reactive protein (CRP). The study included 10 healthy, non-smoking men (18–40 years) free from medication. Statistical differences in tryptophan and kynurenine metabolites as well as associations with IL-6 and CRP in LPS and placebo treated subjects were assessed with linear mixed-effects models.
Results
Systemic injection of LPS was associated with significantly lower concentrations of plasma tryptophan and kynurenine after 4 h, as well as higher concentrations of quinolinic acid (QUIN) after 48 h compared to the placebo injection. No differences were found in kynurenic acid (KYNA) or picolinic acid plasma concentrations between LPS or placebo treatment. The KYNA/kynurenine ratio peaked at 6 h post LPS injection while QUIN/kynurenine maintained significantly higher from 3 h post LPS injection until 24 h. The kynurenine/tryptophan ratio was higher at 24 h and 48 h post LPS treatment. Finally, we report an association between the kynurenine/tryptophan ratio and CRP.
Conclusions
Our findings strongly support the concept that an inflammatory challenge with LPS induces the kynurenine pathway in humans, activating both the neurotoxic (QUIN) and neuroprotective (KYNA) branch of the kynurenine pathway.
Trial registration
This study is based on a study registered at ClinicalTrials.gov,
NCT03392701
. Registered 21 December 2017.
Journal Article
Oral intake of xanthohumol attenuates lipoteichoic acid-induced inflammatory response in human PBMCs
2022
PurposeThe aim of the study was to determine if xanthohumol, a prenylated chalcone found in Hop (Humulus lupulus), has anti-inflammatory effects in healthy humans if applied in low doses achievable through dietary intake.MethodsIn a placebo-controlled single-blinded cross-over design study, 14 healthy young men and women either consumed a beverage containing 0.125 mg xanthohumol or a placebo. Peripheral blood mononuclear cells (PBMCs) were isolated before and 1 h after the intake of the beverages. Subsequently, PBMCs were stimulated with or without lipoteichoic acid (LTA) for 24 and 48 h. Concentrations of interleukin-1β (IL-1β), interleukin-6 (IL-6) and soluble cluster of differentiation (sCD14) protein were determined in cell culture supernatant. Furthermore, hTLR2 transfected HEK293 cells were stimulated with LTA in the presence or absence of xanthohumol and sCD14.ResultsThe stimulation of PBMCs with LTA for 24 and 48 h resulted in a significant induction of IL-1β, IL-6, and sCD14 protein release in PBMCs of both, fasted subjects and subjects after the ingestion of the placebo. In contrast, after ingesting xanthohumol, LTA-dependent induction of IL-1β, IL-6, and sCD14 protein release from PBMCs was not significantly higher than in unstimulated cells after 48 h. In hTLR2 transfected HEK293 cells xanthohumol significantly suppressed the LTA-dependent activation of cells, an effect attenuated when cells were co-incubated with sCD14.ConclusionThe results of our study suggest that an ingestion of low doses of xanthohumol can suppress the LTA-dependent stimulation of PBMCs through mechanisms involving the interaction of CD14 with TLR2. Study registered at ClinicalTrials.gov (NCT04847193, 22.03.2022).
Journal Article
Brain endothelial GSDMD activation mediates inflammatory BBB breakdown
2024
The blood–brain barrier (BBB) protects the central nervous system from infections or harmful substances
1
; its impairment can lead to or exacerbate various diseases of the central nervous system
2
–
4
. However, the mechanisms of BBB disruption during infection and inflammatory conditions
5
,
6
remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs.
7
–
9
), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP–CD14 LPS transfer and internalization pathway
10
–
12
resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes
Casp11
and
Cd14
expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In
CASP4
-humanized mice, Gram-negative
Klebsiella pneumoniae
infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.
Lipopolysaccharide-induced breakdown of the blood–brain barrier requires activation of GSDMD-mediated plasma membrane permeabilization and pyroptosis in brain endothelial cells.
Journal Article
Pushing the envelope: LPS modifications and their consequences
2019
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.Lipopolysaccharide is a key component of the Gram-negative cell envelope and functions, for example, as a permeability barrier or determinant of host immune responses. In this Review, Simpson and Trent guide us through lipopolysaccharide biogenesis and modifications and their functional and therapeutic implications.
Journal Article
Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling
by
Płóciennikowska, Agnieszka
,
Borzęcka, Kinga
,
Hromada-Judycka, Aneta
in
Adaptor Proteins, Vesicular Transport - metabolism
,
Bacteria
,
Bacterial Infections - immunology
2015
Toll-like receptor 4 (TLR4) is activated by lipopolysaccharide (LPS), a component of Gram-negative bacteria to induce production of pro-inflammatory mediators aiming at eradication of the bacteria. Dysregulation of the host responses to LPS can lead to a systemic inflammatory condition named sepsis. In a typical scenario, activation of TLR4 is preceded by binding of LPS to CD14 protein anchored in cholesterol- and sphingolipid-rich microdomains of the plasma membrane called rafts. CD14 then transfers the LPS to the TLR4/MD-2 complex which dimerizes and triggers MyD88- and TRIF-dependent production of pro-inflammatory cytokines and type I interferons. The TRIF-dependent signaling is linked with endocytosis of the activated TLR4, which is controlled by CD14. In addition to CD14, other raft proteins like Lyn tyrosine kinase of the Src family, acid sphingomyelinase, CD44, Hsp70, and CD36 participate in the TLR4 signaling triggered by LPS and non-microbial endogenous ligands. In this review, we summarize the current state of the knowledge on the involvement of rafts in TLR4 signaling, with an emphasis on how the raft proteins regulate the TLR4 signaling pathways. CD14-bearing rafts, and possibly CD36-rich rafts, are believed to be preferred sites of the assembly of a multimolecular complex which mediates the endocytosis of activated TLR4.
Journal Article