Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,528
result(s) for
"Livestock - anatomy "
Sort by:
Shipping amphorae and shipping sheep? Livestock mobility in the north-east Iberian peninsula during the Iron Age based on strontium isotopic analyses of sheep and goat tooth enamel
by
Bosch, Delphine
,
Pellegrini, Maura
,
Valenzuela-Lamas, Silvia
in
Animal Husbandry - history
,
Animal Husbandry - methods
,
Animal populations
2018
Animal mobility is a common strategy to overcome scarcity of food and the related over-grazing of pastures. It is also essential to reduce the inbreeding rate of animal populations, which is known to have a negative impact on fertility and productivity. The present paper shows the geographic range of sheep provisioning in different phases of occupation at the Iron Age site of Turó de la Font de la Canya (7th to 3rd centuries BC). Strontium isotope ratios from 34 archaeological sheep and goat enamel, two archaeological bones and 14 modern tree leaves are presented. The isotopic results suggest that sheep and goats consumed at the site were reared locally (within a few kilometres radius) during the whole period of occupation. The paper discusses the isotopic results in light of the socio-political structure of this period, as complex, strongly territorial societies developed during the Iron Age in the north-east Iberian Peninsula.
Journal Article
Antiparasitic activity of chicory (Cichorium intybus) and its natural bioactive compounds in livestock: a review
by
Williams, Andrew R.
,
Valente, Angela H.
,
Thamsborg, Stig M.
in
Animal Feed - analysis
,
Animal products
,
Animals
2018
Increasing drug resistance in gastrointestinal (GI) parasites of livestock and concerns about chemical residues in animal products and the environment are driving the development of alternative control strategies that are less reliant on the use of synthetic drugs. An increasingly investigated approach is the use of bioactive forages with antiparasitic properties as part of the animal’s diet (nutraceuticals) or as potential sources of novel, natural parasiticides. Chicory (
Cichorium intybus
) is a multi-purpose crop and one of the most promising bioactive forages in temperate regions, and numerous
in vivo
trials have explored its potential against parasitic nematodes in livestock. However, it is unclear whether chicory can induce a direct and broad activity against various GI parasites in different livestock species, and the levels of chicory in the diet that are required to exert an efficient antiparasitic effect. Moreover, the mechanisms leading to the reported parasiticidal activity of chicory are still largely unknown, and its bioactive phytochemicals have only recently been investigated. In this review, we summarise the progress in the study of the antiparasitic activity of chicory and its natural bioactive compounds against GI parasites in livestock, through examination of the published literature. The available evidence indicates that feeding chicory can reduce faecal egg counts and/or worm burdens of abomasal nematodes, but not infections with intestinal worms, in ruminants. Highly chicory-rich diets (≥ 70% of chicory dry matter in the diet) may be necessary to directly affect abomasal parasitism. Chicory is known to synthesise several bioactive compounds with potential antiparasitic activity, but most research has been devoted to the role of sesquiterpene lactones (SL). Recent
in vitro
studies have confirmed direct and potent activity of SL-rich extracts from chicory against different GI helminths of livestock. Chicory SL have also been reported to exhibit antimalarial properties and its potential antiprotozoal activity in livestock remains to be evaluated. Furthermore, the detailed identification of the main antiparasitic metabolites of chicory and their pharmacokinetics need further confirmation. Research gaps and perspectives on the potential use of chicory as a nutraceutical forage and a source of bioactive compounds for parasite control in livestock are discussed.
Journal Article
Review: Animal model and the current understanding of molecule dynamics of adipogenesis
by
Duarte, M. S.
,
Bergen, W. G.
,
Hausman, G. J.
in
adipogenesis
,
Adipogenesis - physiology
,
Adipose tissue
2016
Among several potential animal models that can be used for adipogenic studies, Wagyu cattle is the one that presents unique molecular mechanisms underlying the deposit of substantial amounts of intramuscular fat. As such, this review is focused on current knowledge of such mechanisms related to adipose tissue deposition using Wagyu cattle as model. So abundant is the lipid accumulation in the skeletal muscles of these animals that in many cases, the muscle cross-sectional area appears more white (adipose tissue) than red (muscle fibers). This enhanced marbling accumulation is morphologically similar to that seen in numerous skeletal muscle dysfunctions, disease states and myopathies; this might indicate cross-similar mechanisms between such dysfunctions and fat deposition in Wagyu breed. Animal models can be used not only for a better understanding of fat deposition in livestock, but also as models to an increased comprehension on molecular mechanisms behind human conditions. This revision underlies some of the complex molecular processes of fat deposition in animals.
Journal Article
Pre-Roman improvements to agricultural production: Evidence from livestock husbandry in late prehistoric Italy
by
Valenzuela-Lamas, Silvia
,
Trentacoste, Angela
,
Nieto-Espinet, Ariadna
in
Abundance
,
Agricultural management
,
Agricultural production
2018
Domestication of wild cattle, sheep, and pigs began a process of body size diminution. In most of Western Europe this process continued across prehistory and was not reversed until the Roman period. However, in Italy, an increase in livestock body size occurred during the Iron Age, earlier than the Western provinces. In order to better understand the nature and timing of this early increase in animal size, this paper presents a detailed regional study of taxonomic abundance and biometric data from zooarchaeological assemblages recovered from the Po and Venetian-Friulian Plains in northern Italy. Our results demonstrate a high level of regionality in the choice of species exploited, with husbandry systems focused on different domesticates, as well as regional differences in animal size. However, despite significant variation in species frequencies, settlement structure, and epigraphic tradition, all areas with sufficient data demonstrate similar significant changes in livestock body size. Cattle and sheep increased incrementally in size prior to the Roman conquest in all regions considered; surprisingly, pigs continued to decrease in size throughout later prehistory. The incremental pace and pan-regional character of the size change in cattle and sheep suggests an internally motivated phenomenon rather than herd replacement with a new larger population, as might follow colonisation or conquest. The divergence in size trends for bovids and suids suggests a noteworthy change in cattle and sheep herding practices during the Iron Age or final centuries of the Bronze Age, in contrast with greater continuity in pig management. Our analysis provides a thorough zooarchaeological synthesis for northern Italy and, for the first time, demonstrates that both cattle and sheep increased in size outside of Roman territory well before the conquest of this area. This study offers a basis for future chemical analyses (DNA, isotopes), which will further investigate the cause(s) of livestock size changes in northern Italy.
Journal Article
African Wild Ungulates Compete with or Facilitate Cattle Depending on Season
by
Odadi, Wilfred O.
,
Young, Truman P.
,
Abdulrazak, Shaukat A.
in
Animal and plant ecology
,
Animal, plant and microbial ecology
,
Animals
2011
Savannas worldwide are vital for both socioeconomic and biodiversity values. In these ecosystems, management decisions are based on the perception that wildlife and livestock compete for food, yet there are virtually no experimental data to support this assumption. We examined the effects of wild African ungulates on cattle performance, food intake, and diet quality. Wild ungulates depressed cattle food intake and performance during the dry season (competition) but enhanced cattle diet quality and performance during the wet season (facilitation). These results extend our understanding of the context-dependent—competition-facilitation balance, in general, and are critical for better understanding and managing wildlife-livestock coexistence in human-occupied savanna landscapes.
Journal Article
Unforeseen plant phenotypic diversity in a dry and grazed world
2024
Earth harbours an extraordinary plant phenotypic diversity
1
that is at risk from ongoing global changes
2
,
3
. However, it remains unknown how increasing aridity and livestock grazing pressure—two major drivers of global change
4
–
6
—shape the trait covariation that underlies plant phenotypic diversity
1
,
7
. Here we assessed how covariation among 20 chemical and morphological traits responds to aridity and grazing pressure within global drylands. Our analysis involved 133,769 trait measurements spanning 1,347 observations of 301 perennial plant species surveyed across 326 plots from 6 continents. Crossing an aridity threshold of approximately 0.7 (close to the transition between semi-arid and arid zones) led to an unexpected 88% increase in trait diversity. This threshold appeared in the presence of grazers, and moved toward lower aridity levels with increasing grazing pressure. Moreover, 57% of observed trait diversity occurred only in the most arid and grazed drylands, highlighting the phenotypic uniqueness of these extreme environments. Our work indicates that drylands act as a global reservoir of plant phenotypic diversity and challenge the pervasive view that harsh environmental conditions reduce plant trait diversity
8
–
10
. They also highlight that many alternative strategies may enable plants to cope with increases in environmental stress induced by climate change and land-use intensification.
Analysis of 20 chemical and morphological plant traits at diverse sites across 6 continents shows that the transition from semi-arid to arid zones is associated with an unexpected 88% increase in trait diversity.
Journal Article
Effect of nitrogen fertilization and shading on morphogenesis, structure and leaf anatomy of Megathyrsus maximus genotypes
by
Lopes, Aline da Rosa
,
Lage Filho, Nauara Moura
,
Domingues, Felipe Nogueira
in
Adaptation
,
Anatomy
,
Chloroplasts
2024
The use of exotic grasses of African origin for pastures in Brazil has been a major advancement in livestock production, but little is known about the responses of these grasses to nitrogen fertilizers associated with shading. In this study, the morphogenetic, structural, and leaf anatomical characteristics of Megathyrsus maximus cultivars’ Tamani and Quênia were investigated as a function of N dose and shade. Morphogenetic and structural characteristics and leaf anatomy were studied under three shading levels (0, 30, and 50 %) and four N doses (0, 100, 200, and 300 kg N ha
-1
) to simulate growth in a silvopastoral system. When comparing the cultivars, Quênia was more efficient in terms of phyllochron up to fertilization with 100 kg N ha
-1
. The leaf senescence rate of Tamani was higher than that of Quênia at the 30 and 50 % shade levels. The total area (TA) occupied by leaf tissues decreased in Quênia as a function of the increase in N fertilization, whereas the TA of Tamani did not change. The thickness of the adaxial epidermis was greater in Quênia (0.68 µm) than in Tamani (0.50 µm) when not fertilized. The area occupied by the mesophyll was greater in both cultivars when they received fertilization equivalent to 300 kg N ha
-1
. Quênia grass has a smaller phyllochron than Tamani grass, due to the rapid reconstruction of its photosynthetic apparatus, especially when it receives higher levels of nitrogen fertilization. However, Tamani grass has a greater distribution of plant tissues. The mesophyll area is larger in Tamani grass due to the greater presence of chloroplasts, which facilitates digestion by animals. The Tamani modified the leaf anatomical tissues more significantly in relation to shading, whereas the Quênia modified them in relation to N fertilization, which reinforces the suggestion of a more appropriate use of Tamani in silvopastoral systems.
Journal Article
How Muscle Structure and Composition Influence Meat and Flesh Quality
by
Louveau, Isabelle
,
Listrat, Anne
,
Astruc, Thierry
in
Adipose tissue
,
Animals
,
Environmental factors
2016
Skeletal muscle consists of several tissues, such as muscle fibers and connective and adipose tissues. This review aims to describe the features of these various muscle components and their relationships with the technological, nutritional, and sensory properties of meat/flesh from different livestock and fish species. Thus, the contractile and metabolic types, size and number of muscle fibers, the content, composition and distribution of the connective tissue, and the content and lipid composition of intramuscular fat play a role in the determination of meat/flesh appearance, color, tenderness, juiciness, flavor, and technological value. Interestingly, the biochemical and structural characteristics of muscle fibers, intramuscular connective tissue, and intramuscular fat appear to play independent role, which suggests that the properties of these various muscle components can be independently modulated by genetics or environmental factors to achieve production efficiency and improve meat/flesh quality.
Journal Article
Earliest Horse Harnessing and Milking
by
Olsen, Sandra
,
Outram, Alan K
,
Kasparov, Alexei
in
Agriculture - history
,
Animal domestication
,
Animal Husbandry - history
2009
Horse domestication revolutionized transport, communications, and warfare in prehistory, yet the identification of early domestication processes has been problematic. Here, we present three independent lines of evidence demonstrating domestication in the Eneolithic Botai Culture of Kazakhstan, dating to about 3500 B.C.E. Metrical analysis of horse metacarpals shows that Botai horses resemble Bronze Age domestic horses rather than Paleolithic wild horses from the same region. Pathological characteristics indicate that some Botai horses were bridled, perhaps ridden. Organic residue analysis, using δ¹³C and δD values of fatty acids, reveals processing of mare's milk and carcass products in ceramics, indicating a developed domestic economy encompassing secondary products.
Journal Article
Status and Ecological Effects of the World's Largest Carnivores
by
Ritchie, Euan G.
,
Beschta, Robert L.
,
Schmitz, Oswald J.
in
Animals
,
Aquatic mammals
,
Biodiversity
2014
Large-bodied animals play essential roles in ecosystem structuring and stability through both indirect and direct trophic effects. In recent times, humans have disrupted this trophic structure through both habitat destruction and active extirpation of large predators, resulting in large declines in numbers and vast contractions in their geographic ranges.
Ripple
et al.
(
10.1126/science.1241484
; see the Perspective by
Roberts
) review the status, threats, and ecological importance of the 31 largest mammalian carnivores globally. These species are responsible for a suite of direct and indirect stabilizing effects in ecosystems. Current levels of decline are likely to result in ecologically ineffective population densities and can lead to ecosystem instability. The preservation of large carnivores can be challenging because of their need for large ranges and their potential for human conflict. However, the authors demonstrate that the preservation of large carnivores is ecologically important and that the need for conservation action is immediate, given the severity of the threats they face.
Large carnivores face serious threats and are experiencing massive declines in their populations and geographic ranges around the world. We highlight how these threats have affected the conservation status and ecological functioning of the 31 largest mammalian carnivores on Earth. Consistent with theory, empirical studies increasingly show that large carnivores have substantial effects on the structure and function of diverse ecosystems. Significant cascading trophic interactions, mediated by their prey or sympatric mesopredators, arise when some of these carnivores are extirpated from or repatriated to ecosystems. Unexpected effects of trophic cascades on various taxa and processes include changes to bird, mammal, invertebrate, and herpetofauna abundance or richness; subsidies to scavengers; altered disease dynamics; carbon sequestration; modified stream morphology; and crop damage. Promoting tolerance and coexistence with large carnivores is a crucial societal challenge that will ultimately determine the fate of Earth’s largest carnivores and all that depends upon them, including humans.
Journal Article