Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
31,507
result(s) for
"Livestock feeds"
Sort by:
Chemical Composition and Nutritive Benefits of Chicory (Cichorium intybus) as an Ideal Complementary and/or Alternative Livestock Feed Supplement
by
Nwafor, Ifeoma Chinyelu
,
Achilonu, Matthew C.
,
Shale, Karabo
in
Acids
,
Animal Feed - standards
,
Animals
2017
Chicory is a perennial plant grown in different parts of the world, used as forage for livestock, as folklore remedies, or as a vegetable addition in human diets. There are several varieties of the chicory plant, known differently globally due to its numerous medicinal, culinary, and nutritional qualities. Most parts of the plant contain a potpourri of nutrients ranging within carbohydrates, proteins, vitamins, minerals, soluble fiber, trace elements, and bioactive phenolic compounds, which are responsible for the various nutritive, prophylactic, and therapeutic qualities of chicory. Inulin, coumarins, tannins, monomeric flavonoids, and sesquiterpene lactones are some of the major phytocompounds mostly found in chicory plants. The health-promoting activities attributed to chicory comprise, among others, anti-inflammatory, anticarcinogenic, antiviral, antibacterial, antimutagenic, antifungal, anthelmintic, immune-stimulating, and antihepatotoxic and its antioxidative qualities. As a versatile plant, chicory’s chemical composition and use as a suitable livestock feed supplement or as an alternative feed ingredient (AFI) are thus reviewed.
Journal Article
Exploring the Future of Edible Insects in Europe
by
Espinosa Diaz, Salomon
,
Menozzi, Davide
,
Mancini, Simone
in
Circular economy
,
Consumers
,
cricket
2022
The effects of population increase and food production on the environment have prompted various international organizations to focus on the future potential for more environmentally friendly and alternative protein products. One of those alternatives might be edible insects. Entomophagy, the practice of eating insects by humans, is common in some places but has traditionally been shunned in others, such as European countries. The last decade has seen a growing interest from the public and private sectors to the research in the sphere of edible insects, as well as significant steps forward from the legislative perspective. In the EU, edible insects are considered novel foods, therefore a specific request and procedure must be followed to place them in the market; in fact, until now, four requests regarding insects as a novel food have been approved. Insects could also be used as feed for livestock, helping to increase food production without burdening the environment (indirect entomophagy). Market perspectives for the middle of this decade indicate that most of the demand will be from the feed sector (as pet food or livestock feed production). Undoubtedly, this sector is gaining momentum and its potential relies not only in food, but also in feed in the context of a circular economy.
Journal Article
Oilseed crop sunflower (Helianthus annuus) as a source of food: Nutritional and health benefits
by
Babalola, Olubukola Oluranti
,
Adeleke, Bartholomew Saanu
in
Agriculture
,
Alkaloids
,
Anticancer properties
2020
The use of biofertilizers in developing environmentally friendly agriculture as an alternative to chemical‐based fertilizers in enhancing food production is promising in sustainable agriculture for the improvement in the yield of some commercial crops such as sunflowers and other oilseed crops in terms of quality and quantity. Sunflower is an important oilseed crop native to South America and currently cultivated throughout the world. Generally, the sunflower is considered important based on its nutritional and medicinal value. Due to its beneficial health effects, sunflower has been recognized as functional foods or nutraceutical, although not yet fully harnessed. Sunflower contains mineral elements and phytochemicals such as dietary fiber, manganese, vitamins, tocopherols, phytosterols, triterpene glycosides, α‐tocopherol, glutathione reductase, flavonoids, phenolic acids, carotenoids, peptides, chlorogenic acid, caffeic acid, alkaloids, tannins, and saponins; and these compounds contribute to their functional and nutraceutical development. The extract from sunflower is known to be a potential source of antimicrobial, anti‐inflammatory, antitumor, and antioxidants agents that protect human cells against harmful reactive oxygen molecules and pathogenic microorganisms. Also, the pharmacological survey on sunflower had revealed its curative power to different kinds of diseases. The health benefits of sunflower include blood pressure and diabetic control, skin protection, and lowering cholesterol and other functions. This review is written with appropriate referencing to previously published work and provides updated information regarding the new method of organic farming for sunflower production, nutritional and health benefits, and its by‐products as human diet and livestock feed. Also, the constraints of sunflower production are elucidated.
Agricultural food production in conventional farming using chemical fertilizers and pesticides has pose threats to soil ecology. Sunflower and its products serve as source of nutritional food for man and livestock. Consumption of sunflower oil and seeds with high antioxidant content is beneficial in scavenging the free radicals that might likely cause disease conditions in human.
Journal Article
A planetary health innovation for disease, food and water challenges in Africa
by
Haggerty, Christopher J. E.
,
Riveau, Gilles
,
Sack, Alexandra
in
692/699/255/1715
,
692/700/478/174
,
704/158/2456
2023
Many communities in low- and middle-income countries globally lack sustainable, cost-effective and mutually beneficial solutions for infectious disease, food, water and poverty challenges, despite their inherent interdependence
1
–
7
. Here we provide support for the hypothesis that agricultural development and fertilizer use in West Africa increase the burden of the parasitic disease schistosomiasis by fuelling the growth of submerged aquatic vegetation that chokes out water access points and serves as habitat for freshwater snails that transmit
Schistosoma
parasites to more than 200 million people globally
8
–
10
. In a cluster randomized controlled trial (ClinicalTrials.gov: NCT03187366) in which we removed invasive submerged vegetation from water points at 8 of 16 villages (that is, clusters), control sites had 1.46 times higher intestinal
Schistosoma
infection rates in schoolchildren and lower open water access than removal sites. Vegetation removal did not have any detectable long-term adverse effects on local water quality or freshwater biodiversity. In feeding trials, the removed vegetation was as effective as traditional livestock feed but 41 to 179 times cheaper and converting the vegetation to compost provided private crop production and total (public health plus crop production benefits) benefit-to-cost ratios as high as 4.0 and 8.8, respectively. Thus, the approach yielded an economic incentive—with important public health co-benefits—to maintain cleared waterways and return nutrients captured in aquatic plants back to agriculture with promise of breaking poverty–disease traps. To facilitate targeting and scaling of the intervention, we lay the foundation for using remote sensing technology to detect snail habitats. By offering a rare, profitable, win–win approach to addressing food and water access, poverty alleviation, infectious disease control and environmental sustainability, we hope to inspire the interdisciplinary search for planetary health solutions
11
to the many and formidable, co-dependent global grand challenges of the twenty-first century.
By harvesting aquatic vegetation that provides habitat for snails that harbour
Schistosoma
parasites and converting it to compost and animal feed, a trial reduced schistosomiasis prevalence in children while providing wider economic benefits.
Journal Article
Individual and Combined Occurrence of Mycotoxins in Feed Ingredients and Complete Feeds in China
by
Zhang, Ni-Ya
,
Dai, Jie-Fan
,
Karrow, Niel
in
Aflatoxin B1
,
Aflatoxin B1 - analysis
,
Aflatoxins
2018
The objective of this study was to investigate the individual and combined contamination of aflatoxin B1 (AFB1), zearalenone (ZEN) and deoxynivalenol (DON) in feedstuffs from different Provinces of China between 2016 and 2017. A total of 1569 samples, including 742 feed ingredients and 827 complete pig feed samples, were collected from various regions of China for mycotoxins analysis. The results showed that individual occurrence rates of AFB1, ZEN, and DON were more than 83.3%, 88%, and 74.5%, respectively, in all the tested samples. DON was the most prevalent contaminant, followed by ZEN and AFB1, with the average concentrations ranging from 450.0–4381.5 μg/kg, 2.3–729.2 μg/kg, and 1.3–10.0 μg/kg, respectively. Notable, 38.2%, 10.8%, and 0.6% of complete pig feeds were contaminated with DON, ZEN, and AFB1 over China’s regulatory limits, respectively. Moreover, over 75.0% analyzed samples were co-contaminated with two or three mycotoxins. In conclusion, the current study revealed that the feedstuffs in China were severely contaminated with DON, followed by ZEN and AFB1 during the past two years. These findings highlight the importance of monitoring mycotoxins in livestock feed and implementing feed management and bioremediation strategies to reduce mycotoxin exposure.
Journal Article
Socioeconomic effects of water hyacinth (Echhornia Crassipes) in Lake Tana, North Western Ethiopia
by
Assefa, Workiyie Worie
,
Gezie, Ayenew
,
Enyew, Belachew Getnet
in
Agricultural economics
,
Agricultural production
,
Alien plants
2020
Water hyacinth has been progressively advanced in Lake Tana since 2011 and covered vast areas of the lakeshore. The aim of this study was to assess how the lakeshore covered by the weed mats affected the socioeconomic of the local community. The study was based on a survey of 405 households, 8 group discussions and interviews of 15 key informants conducted from January to March 2018. The results revealed that crop production, livestock feed supply, water supply, fishing, the health of local people and livestock were impacted negatively by the infestation of water hyacinth. The range of socioeconomic problems caused by the weed generally implied the real impacts on the lives of local communities and national economic development. The efforts made to control water hyacinth has costed huge labor and financial resources. The results revealed that close to 800,000 human labor dedicated to manual removal of the weed from 2012 to 2018 and above one million USD spent for procurement of harvester machines and bioagent experiments. In spite of the devotion of huge labor and spending of a lot of money, the expansion of the weed has not controlled. Poor coordination of controlling efforts, dumping of harvested dense mats of the weed in the lakeshore, lack of genuine participation of the local people are principal factors for the failure of the controlling efforts A coordination of various stakeholders thus is needed to make eradicating methods more effective. Other alternative options should also be considered to control the weed expansion.
Journal Article
Evaluation of Rare Earth Element-Associated Hormetic Effects in Candidate Fertilizers and Livestock Feed Additives
2023
Rare earth elements (REEs) are recognized as emerging contaminants with implications in human and environmental health. Apart from their adverse effects, REEs have been reported as having positive effects when amended to fertilizers and livestock feed additives, thus suggesting a hormetic trend, implying a concentration-related shift from stimulation to inhibition and toxicity, with analogous trends that have been assessed for a number of xenobiotics. In view of optimizing the success of REE mixtures in stimulating crop yield and/or livestock growth or egg production, one should foresee the comparative concentration-related effects of individual REEs (e.g., Ce and La) vs. their mixtures, which may display distinct trends. The results might prompt further explorations on the use of REE mixtures vs. single REEs aimed at optimizing the preparation of fertilizers and feed additives, in view of the potential recognition of their use in agronomy and zootechny.
Journal Article
Production of high protein yeast using enzymatically liquefied almond hulls
2023
Animal feed ingredients, especially those abundant in high quality protein, are the most expensive component of livestock production. Sustainable alternative feedstocks may be sourced from abundant, low value agricultural byproducts. California almond production generates nearly 3 Mtons of biomass per year with about 50% in the form of hulls. Almond hulls are a low-value byproduct currently used primarily for animal feed for dairy cattle. However, the protein and essential amino acid content are low, at ~30% d.b.. The purpose of this study was to improve the protein content and quality using yeast. To achieve this, the almond hulls were liquefied to liberate soluble and structural sugars. A multi-phase screening approach was used to identify yeasts that can consume a large proportion of the sugars in almond hulls while accumulating high concentrations of amino acids essential for livestock feed. Compositional analysis showed that almond hulls are rich in polygalacturonic acid (pectin) and soluble sucrose. A pectinase-assisted process was optimized to liquefy and release soluble sugars from almond hulls. The resulting almond hull slurry containing solubilized sugars was subsequently used to grow high-protein yeasts that could consume nutrients in almond hulls while accumulating high concentrations of high-quality protein rich in essential amino acids needed for livestock feed, yielding a process that would produce 72 mg protein/g almond hull. Further work is needed to achieve conversion of galacturonic acid to yeast cell biomass.
Journal Article
Harnessing the Potential of Forage Legumes, Alfalfa, Soybean, and Cowpea for Sustainable Agriculture and Global Food Security
by
Sovetgul Asekova
,
Jeong-Dong Lee
,
J. Grover Shannon
in
Acclimatization
,
Agricultural production
,
Alfalfa
2018
Substantial improvements in access to food and increased purchasing power are driving many people toward consuming nutrition-rich foods causing an unprecedented demand for protein food worldwide, which is expected to rise further. Forage legumes form an important source of feed for livestock and have potential to provide a sustainable solution for food and protein security. Currently, alfalfa is a commercially grown source of forage and feed in many countries. However, soybean and cowpea also have the potential to provide quality forage and fodder for animal use. The cultivation of forage legumes is under threat from changing climatic conditions, indicating the need for breeding cultivars that can sustain and acclimatize to the negative effects of climate change. Recent progress in genetic and genomic tools have facilitated the identification of quantitative trait loci and genes/alleles that can aid in developing forage cultivars through genomics-assisted breeding. Furthermore, transgenic technology can be utilized to manipulate the genetic makeup of plants to improve forage digestibility for better animal performance. In this article, we assess the genetic potential of three important legume crops, alfalfa, soybean, and cowpea in supplying quality fodder and feed for livestock. In addition, we examine the impact of climate change on forage quality and discuss efforts made in enhancing the adaptation of the plant to the abiotic stress conditions. Subsequently, we suggest the application of integrative approaches to achieve adequate forage production amid the unpredictable climatic conditions.
Journal Article
Serum Polybrominated Biphenyls (PBBs) and Polychlorinated Biphenyls (PCBs) and Thyroid Function among Michigan Adults Several Decades after the 1973–1974 PBB Contamination of Livestock Feed
by
Darrow, Lyndsey A.
,
Jacobson, Melanie H.
,
Barr, Dana Boyd
in
Accidental contamination
,
Adult
,
Adults
2017
In 1973-1974, Michigan residents were exposed to polybrominated biphenyls (PBBs) through an accidental contamination of the food supply. Residents were enrolled in a registry assembled after the incident, and they and their children participated in follow-up studies to assess subsequent health outcomes.
We evaluated associations between serum PBBs and polychlorinated biphenyls (PCBs) and markers of thyroid function among Michigan adults.
Serum concentrations of four PBB and four PCB congeners were measured at least once in 753 adults, including 79 women who participated in a 2004-2006 study and 683 women and men with follow-up during 2012-2015. Participants completed questionnaires on health conditions (including physician-diagnosed thyroid disease), behaviors, and demographics. Thyroid hormones were measured in a subset without thyroid disease (n=551). In multivariable linear regression models, PBB and PCB congener concentrations, on both the volume (nanogram/milliliter) and lipid (nanogram/gram lipid) basis, were assessed in relation to thyroid hormones. Logistic regression models were used to estimate associations between serum PBBs and PCBs and thyroid disease.
Thyroid disease was common (18% overall; 25% among women). Among women, all odds ratios (ORs) for PBB-153 and thyroid disease were positive for quintiles above the reference level, but estimates were imprecise and were without a monotonic increase. For an interquartile range (IQR) increase in PBB-153 (0.43 ng/mL), the OR (any thyroid disease)=1.12; (95% CI: 0.83, 1.52) (n=105 cases); for hypothyroidism, OR=1.35 (95% CI: 0.86, 2.13) (n=49 cases). There were 21 cases of thyroid disease in men [OR=0.69 (95% CI: 0.33); 1.44 for an IQR increase (0.75 ng/mL) in serum PBB-153]. PCB congeners were statistically significantly associated with greater total and free thyroxine and total triiodothyronine among women and with total and free triiodothyronine among men in lipid-standardized models.
We found some evidence to support associations of PBBs and PCBs with thyroid disease and thyroid hormone levels. https://doi.org/10.1289/EHP1302.
Journal Article