Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
689 result(s) for "Lizards - growth "
Sort by:
Resolving the life cycle alters expected impacts of climate change
Recent models predict contrasting impacts of climate change on tropical and temperate species, but these models ignore how environmental stress and organismal tolerance change during the life cycle. For example, geographical ranges and extinction risks have been inferred from thermal constraints on activity during the adult stage. Yet, most animals pass through a sessile embryonic stage before reaching adulthood, making them more susceptible to warming climates than current models would suggest. By projecting microclimates at high spatio-temporal resolution and measuring thermal tolerances of embryos, we developed a life cycle model of population dynamics for North American lizards. Our analyses show that previous models dramatically underestimate the demographic impacts of climate change. A predicted loss of fitness in 2% of the USA by 2100 became 35% when considering embryonic performance in response to hourly fluctuations in soil temperature. Most lethal events would have been overlooked if we had ignored thermal stress during embryonic development or had averaged temperatures over time. Therefore, accurate forecasts require detailed knowledge of environmental conditions and thermal tolerances throughout the life cycle.
A living mesoscopic cellular automaton made of skin scales
In vertebrates, skin colour patterns emerge from nonlinear dynamical microscopic systems of cell interactions. Here we show that in ocellated lizards a quasi-hexagonal lattice of skin scales, rather than individual chromatophore cells, establishes a green and black labyrinthine pattern of skin colour. We analysed time series of lizard scale colour dynamics over four years of their development and demonstrate that this pattern is produced by a cellular automaton (a grid of elements whose states are iterated according to a set of rules based on the states of neighbouring elements) that dynamically computes the colour states of individual mesoscopic skin scales to produce the corresponding macroscopic colour pattern. Using numerical simulations and mathematical derivation, we identify how a discrete von Neumann cellular automaton emerges from a continuous Turing reaction–diffusion system. Skin thickness variation generated by three-dimensional morphogenesis of skin scales causes the underlying reaction–diffusion dynamics to separate into microscopic and mesoscopic spatial scales, the latter generating a cellular automaton. Our study indicates that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution. A mesoscopic cellular automaton arising from a microscopic reaction–diffusion system as a function of skin thickness is observed in ocellated lizards, showing that cellular automata are not merely abstract computational systems, but can directly correspond to processes generated by biological evolution. How the ocellated lizard computed its spots Macroscopic patterns in the animal world, such as zebra stripes and leopard spots, can be described by dynamical processes at the level of biological cells acting within the reaction–diffusion framework. Liana Manukyan et al. discover a remarkable mechanism of pattern formation in ocellated lizards. They recorded the changes in skin patterning of several lizards over four years of development and find that their skin colour changes at the level of individual scales. The patterns appear to be produced by a hexagonal cellular automaton, in which the skin scales are the discrete units. Mathematical theory shows that such a discrete system can emerge from the continuous reaction–diffusion framework when taking into account variations in skin thickness. The intriguing conclusion is that cellular automata are not just abstract computational systems, but can directly correspond to processes generated by biological evolution.
Genomic and transcriptomic investigations of the evolutionary transition from oviparity to viviparity
Viviparous (live-bearing) vertebrates have evolved repeatedly within otherwise oviparous (egg-laying) clades. Over two-thirds of these changes in vertebrate reproductive parity mode happened in squamate reptiles, where the transition has happened between 98 and 129 times. The transition from oviparity to viviparity requires numerous physiological, morphological, and immunological changes to the female reproductive tract, including eggshell reduction, delayed oviposition, placental development for supply of water and nutrition to the embryo by the mother, enhanced gas exchange, and suppression of maternal immune rejection of the embryo. We performed genomic and transcriptomic analyses of a closely related oviparous–viviparous pair of lizards (Phrynocephalus przewalskii and Phrynocephalus vlangalii) to examine these transitions. Expression patterns of maternal oviduct through reproductive development of the egg and embryo differ markedly between the two species. We found changes in expression patterns of appropriate genes that account for each of the major aspects of the oviparity to viviparity transition. In addition, we compared the gene sequences in transcriptomes of four oviparous–viviparous pairs of lizards in different genera (Phrynocephalus, Eremias, Scincella, and Sphenomorphus) to look for possible gene convergence at the sequence level. We discovered low levels of convergence in both amino acid replacement and evolutionary rate shift. This suggests that most of the changes that produce the oviparity–viviparity transition are changes in gene expression, so occasional reversals to oviparity from viviparitymay not be as difficult to achieve as has been previously suggested.
Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change
Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates.
Effects of Environmental Disturbance on Phenotypic Variation: An Integrated Assessment of Canalization, Developmental Stability, Modularity, and Allometry in Lizard Head Shape
When populations experience suboptimal conditions, the mechanisms involved in the regulation of phenotypic variation can be challenged, resulting in increased phenotypic variance. This kind of disturbance can be diagnosed by using morphometric tools to study morphological patterns at different hierarchical levels and evaluate canalization, developmental stability, integration, modularity, and allometry. We assess the effect of urbanization on phenotypic variation in the common wall lizard (Podarcis muralis) by using geometric morphometrics to assess disturbance to head shape development. The head shapes of urban lizards were more variable and less symmetric, suggesting that urban living is more likely to disturb development. Head shape variation was congruent within and across individuals, which indicated that canalization and developmental stability are two related phenomena in these organisms. Furthermore, urban lizards exhibited smaller mean head sizes, divergent size-shape allometries, and increased deviation from within-group allometric lines. This suggests that mechanisms regulating head shape allometry may also be disrupted. The integrated evaluation of several measures of developmental instability at different hierarchical levels, which provided in this case congruent results, can be a powerful methodological guide for future studies, as it enhances the detection of environmental disturbances on phenotypic variation and aids biological interpretation of the results.
Cytogenetic mechanisms of unisexuality in rock lizards
Darevskia rock lizards is a unique complex taxa, including more than thirty species, seven of which are parthenogenetic. In mixed populations of Darevskia lizards, tri- and tetraploid forms can be found. The most important issues in the theory of reticulate evolution of Darevskia lizards are the origin of parthenogenetic species and their taxonomic position. However, there is little data on how meiosis proceeds in these species. The present work reports the complex results of cytogenetics in a diploid parthenogenetic species – D. unisexualis . Here we detail the meiotic prophase I progression and the specific features оf mitotic chromosomes organization. The stages of meiosis prophase I were investigated by immunocytochemical analysis of preparations obtained from isolated primary oocytes of D. unisexualis in comparison with maternal species D. raddei nairensis . It has been shown that in D. unisexualis at the leptotene-zygotene stages the axial elements and the synaptonemal complex (SC) form typical “bouquets”. At the pachytene-diplotene stage, 18 autosomal SC-bivalents and thickened asynapted sex Z and w univalents were observed. The presence of SYCP1 protein between the lateral elements of autosomal chromosomes proved the formation of assembled SCs. Comparative genomic hybridization (CGH) on the mitotic metaphase chromosomes of D. unisexualis was carried out using the genomic DNA isolated from the parental species D. raddei nairensis and D. valentini . In the pericentromeric regions of half of the mitotic chromosomes of D. unisexualis , specific regions inherited from maternal species have been found. Following our results, we suggest a model for diploid germ cells formation from diploid oocytes without premeiotic duplication of chromosomes in the oogenesis of diploid parthenogenetic lizards D. unisexualis . Taken as a whole, our findings confirm the hybrid nature of D. unisexualis and shed light on heterozygosity and automixis in diploid parthenogenetic forms.
SEX-SPECIFIC SELECTION AND INTRASPECIFIC VARIATION IN SEXUAL SIZE DIMORPHISM
Sexual size dimorphism (SSD) is thought to evolve due to sex differences in selection on body size, but it is largely unknown whether intraspecific variation in SSD reflects differences in sex-specific selection among populations. We addressed this question by comparing viability selection between two island populations of the brown anole lizard (Anolis sagrei) that differ in the magnitude of male-biased SSD. On both islands, females experienced stabilizing selection favoring intermediate size whereas males experienced directional selection favoring larger size. Thus, sex-specific selection matched the overall pattern of male-biased SSD, but population differences in the magnitude of SSD were not associated with local differences in selection. Rather, population differences in SSD appear to result from underlying differences in the environmental potential for a rapid growth, coupled with sex-specific phenotypic plasticity. Males grew more slowly on the island with low SSD whereas growth of females did not differ between islands. Both sexes had substantially lower mass per unit length on the island with low SSD, suggesting that they were in a relatively poorer energetic condition. We propose that this energetic constraint disproportionately impacts growth of males due to their greater absolute energy requirements, thus driving intraspecific variation in SSD.
Developmental dynamics of ecomorphological convergence in a transcontinental lizard radiation
Phenotypic convergence has confounded evolutionary biologists for centuries, explained as adaptations to shared selective pressures, or alternatively, the result of limited developmental pathways. We tested the relative roles of adaptation and constraint in generating convergent cranial morphologies across a large lizard radiation, the Lacertidae, whose members inhabit diverse environments throughout the Old World and display high amounts of homoplasy associated with ecological niche. Using 3D X-ray computed tomography, we quantified cranial shape variation associated with ontogeny, allometry, and ecology, covering all lacertid genera and one-third of species diversity. Landmark-based geometric morphometrics showed that cranial shape varied significantly among biomes, with substantial convergence among arid-dwelling lineages. Comparisons of species cranial growth trajectories between biomes revealed that allometric postdisplacement, as evidenced by decreased elevation of a constant ontogenetic slope, drives the convergent paedomorphic appearance of independent arid-dwelling forms. We hypothesize that observed heterochronic changes reflect temporal compression of ancestral life history in response to extreme environments, with associated phenotypes occurring as by-products of adaptive shifts in reproductive investment. Although allometry has long been considered a developmental constraint, our results demonstrate that allometric flexibility during early ontogeny produces convergent ecomorphologies over vast temporal and spatial scales, thus dramatically obscuring underlying phylogenetic signals.
Hand/foot splitting and the ‘re-evolution’ of mesopodial skeletal elements during the evolution and radiation of chameleons
Background One of the most distinctive traits found within Chamaeleonidae is their split/cleft autopodia and the simplified and divergent morphology of the mesopodial skeleton. These anatomical characteristics have facilitated the adaptive radiation of chameleons to arboreal niches. To better understand the homology of chameleon carpal and tarsal elements, the process of syndactyly, cleft formation, and how modification of the mesopodial skeleton has played a role in the evolution and diversification of chameleons, we have studied the Veiled Chameleon ( Chamaeleo calyptratus ). We analysed limb patterning and morphogenesis through in situ hybridization, in vitro whole embryo culture and pharmacological perturbation, scoring for apoptosis, clefting, and skeletogenesis. Furthermore, we framed our data within a phylogenetic context by performing comparative skeletal analyses in 8 of the 12 currently recognized genera of extant chameleons. Results Our study uncovered a previously underappreciated degree of mesopodial skeletal diversity in chameleons. Phylogenetically derived chameleons exhibit a ‘typical’ outgroup complement of mesopodial elements (with the exception of centralia), with twice the number of currently recognized carpal and tarsal elements considered for this clade. In contrast to avians and rodents, mesenchymal clefting in chameleons commences in spite of the maintenance of a robust apical ectodermal ridge (AER). Furthermore, Bmp signaling appears to be important for cleft initiation but not for maintenance of apoptosis. Interdigital cell death therefore may be an ancestral characteristic of the autopodium, however syndactyly is an evolutionary novelty. In addition, we find that the pisiform segments from the ulnare and that chameleons lack an astragalus-calcaneum complex typical of amniotes and have evolved an ankle architecture convergent with amphibians in phylogenetically higher chameleons. Conclusion Our data underscores the importance of comparative and phylogenetic approaches when studying development. Body size may have played a role in the characteristic mesopodial skeletal architecture of chameleons by constraining deployment of the skeletogenic program in the smaller and earliest diverged and basal taxa. Our study challenges the ‘re-evolution’ of osteological features by showing that ‘re-evolving’ a ‘lost’ feature de novo (contrary to Dollo’s Law) may instead be due to so called ‘missing structures’ being present but underdeveloped and/or fused to other adjacent elements (cryptic features) whose independence may be re-established under changes in adaptive selective pressure.
Growth period of Kinosternon scorpioides changes the ovary morphology by follicular differentiation and structural reorganization
Knowledge of gonadal morphophysiology is essential for implementing techniques that can improve reproduction, production, and conservation. This study described the ovarian morphology and oocyte maturation of Kinosternon scorpioides during three growth stages: hatchlings, juveniles, and adults. Ovaries from 20 females were analyzed across these stages. The ovarian follicles were classified into four stages: hatchlings, juveniles and adults. The ovarian follicles were classified into four stages: stage I, characterized by the presence of the granulosa layer; stage II, which showed vesicles in the cytoplasm, in addition to the zona pellucida; stage III, where yolk platelets were observed at the periphery of the oocyte; and stage IV, in which the quantity of yolk platelets increased. In hatchlings, small follicles, covered by a flattened layer of follicular cells (stage I), as well as oogonia, were observed. In juveniles, pre-vitellogenic follicles (stages I and II) were identified, suggesting the onset of puberty, alongside the presence of oogonia. In adult females, larger follicles (stages III and IV) were found, containing yolk, oogonia, corpus luteum, and evidence of follicular atresia. This study revealed distinct morphological and functional changes from hatchlings to adults, with follicular maturation involving significant alterations in structures related to nutrition, protection, and steroidogenesis. These findings provide valuable insights into reproductive mechanisms, supporting improved management strategies and conservation efforts for this species.