Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
124 result(s) for "Locus Coeruleus - cytology"
Sort by:
Locus coeruleus and dopaminergic consolidation of everyday memory
The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH + ) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH + neurons project more profusely than ventral tegmental area TH + neurons to the hippocampus, optogenetic activation of locus coeruleus TH + neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH + photoactivation are sensitive to hippocampal D 1 /D 5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo . Thus, locus coeruleus TH + neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus. Projections from the locus coeruleus, an area typically defined by noradrenergic signalling, to the hippocampus drive novelty-based memory enhancement through possible co-release of dopamine. Memory consolidation in the locus coeruleus Memory retention can be enhanced when something novel or categorically relevant occurs shortly before or after the time of memory encoding, as in 'flashbulb memory'. Dopamine-based mechanisms originating in the ventral tegmental area have been implicated in the phenomenon. These authors suggest that projections from the locus coeruleus—typically defined by noradrenergic signalling—to the hippocampus drive this novelty-based memory enhancement through the possible local release of dopamine.
Viral-genetic tracing of the input–output organization of a central noradrenaline circuit
To better understand the relationship between input and output connectivity for neurons of interest in specific brain regions, a viral-genetic tracing approach is used to identify input based on a combination of neurons’ projection and cell type, as illustrated in a study of locus coeruleus noradrenaline neurons. Noradrenaline circuit architecture New circuit tracing techniques have steadily increased our knowledge of the connectivity between brain regions and how such links may contribute to function and information processing. Here, Liqun Luo and colleagues expand this toolbox to include TRIO, a new strategy designed to characterize the input–output relationships between genetically specified populations of neurons. As a proof of concept, input–output tracing relationships and projection patterns were completed for the noradrenaline neurons of the locus coeruleus. Deciphering how neural circuits are anatomically organized with regard to input and output is instrumental in understanding how the brain processes information. For example, locus coeruleus noradrenaline (also known as norepinephrine) (LC-NE) neurons receive input from and send output to broad regions of the brain and spinal cord, and regulate diverse functions including arousal, attention, mood and sensory gating 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 . However, it is unclear how LC-NE neurons divide up their brain-wide projection patterns and whether different LC-NE neurons receive differential input. Here we developed a set of viral-genetic tools to quantitatively analyse the input–output relationship of neural circuits, and applied these tools to dissect the LC-NE circuit in mice. Rabies-virus-based input mapping indicated that LC-NE neurons receive convergent synaptic input from many regions previously identified as sending axons to the locus coeruleus, as well as from newly identified presynaptic partners, including cerebellar Purkinje cells. The ‘tracing the relationship between input and output’ method (or TRIO method) enables trans-synaptic input tracing from specific subsets of neurons based on their projection and cell type. We found that LC-NE neurons projecting to diverse output regions receive mostly similar input. Projection-based viral labelling revealed that LC-NE neurons projecting to one output region also project to all brain regions we examined. Thus, the LC-NE circuit overall integrates information from, and broadcasts to, many brain regions, consistent with its primary role in regulating brain states. At the same time, we uncovered several levels of specificity in certain LC-NE sub-circuits. These tools for mapping output architecture and input–output relationship are applicable to other neuronal circuits and organisms. More broadly, our viral-genetic approaches provide an efficient intersectional means to target neuronal populations based on cell type and projection pattern.
Breathing control center neurons that promote arousal in mice
Slow, controlled breathing has been used for centuries to promote mental calming, and it is used clinically to suppress excessive arousal such as panic attacks. However, the physiological and neural basis of the relationship between breathing and higher-order brain activity is unknown. We found a neuronal subpopulation in the mouse preBötzinger complex (preBötC), the primary breathing rhythm generator, which regulates the balance between calm and arousal behaviors. Conditional, bilateral genetic ablation of the ~175 Cdh9/Dbx1 double-positive preBötC neurons in adult mice left breathing intact but increased calm behaviors and decreased time in aroused states. These neurons project to, synapse on, and positively regulate noradrenergic neurons in the locus coeruleus, a brain center implicated in attention, arousal, and panic that projects throughout the brain.
Phasic locus coeruleus activity regulates cortical encoding of salience information
Phasic activation of locus coeruleus (LC)-norepinephrine (NE) neurons is associated with focused attention and behavioral responses to salient stimuli. We used cell-type–specific optogenetics and single-unit neurophysiology to identify how LC activity influences neural encoding of sensory information. We found that phasic, but not tonic, LC-NE photoactivation generated a distinct event-related potential (ERP) across cortical regions. Salient sensory stimuli (which innately trigger phasic LC activity) produced strong excitatory cortical responses during this ERP window. Application of weaker, nonsalient stimuli produced limited responses, but these responses were elevated to salient stimulus levels when they were temporally locked with phasic LC photoactivation. These results demonstrate that phasic LC activity enhances cortical encoding of salient stimuli by facilitating long-latency signals within target regions in response to stimulus intensity/salience. The LC-driven salience signal identified here provides a measure of phasic LC activity that can be used to investigate the LC’s role in attentional processing across species.
Centripetal integration of past events in hippocampal astrocytes regulated by locus coeruleus
An essential feature of neurons is their ability to centrally integrate information from their dendrites. The activity of astrocytes, in contrast, has been described as mostly uncoordinated across cellular compartments without clear central integration. Here we report conditional integration of calcium signals in astrocytic distal processes at their soma. In the hippocampus of adult mice of both sexes, we found that global astrocytic activity, as recorded with population calcium imaging, reflected past neuronal and behavioral events on a timescale of seconds. Salient past events, indicated by pupil dilations, facilitated the propagation of calcium signals from distal processes to the soma. Centripetal propagation to the soma was reproduced by optogenetic activation of the locus coeruleus, a key regulator of arousal, and reduced by pharmacological inhibition of α1-adrenergic receptors. Together, our results suggest that astrocytes are computational units of the brain that slowly and conditionally integrate calcium signals upon behaviorally relevant events. How astrocytes can integrate information is incompletely understood. Here the authors show that locus coeruleus-controlled calcium signals in hippocampal astrocytes propagating from their processes to their soma are involved in the information integration upon salient events.
Distinct temporal integration of noradrenaline signaling by astrocytic second messengers during vigilance
Astrocytes may function as mediators of the impact of noradrenaline on neuronal function. Activation of glial α1-adrenergic receptors triggers rapid astrocytic Ca 2+ elevation and facilitates synaptic plasticity, while activation of β-adrenergic receptors elevates cAMP levels and modulates memory consolidation. However, the dynamics of these processes in behaving mice remain unexplored, as do the interactions between the distinct second messenger pathways. Here we simultaneously monitored astrocytic Ca 2+ and cAMP and demonstrate that astrocytic second messengers are regulated in a temporally distinct manner. In behaving mice, we found that while an abrupt facial air puff triggered transient increases in noradrenaline release and large cytosolic astrocytic Ca 2+ elevations, cAMP changes were not detectable. By contrast, repeated aversive stimuli that lead to prolonged periods of vigilance were accompanied by robust noradrenergic axonal activity and gradual sustained cAMP increases. Our findings suggest distinct astrocytic signaling pathways can integrate noradrenergic activity during vigilance states to mediate distinct functions supporting memory. Astrocytic GPCRs activate Ca 2+ and cAMP signaling pathways, however, the in vivo dynamics of the two second messengers have not been fully been characterized. The authors demonstrate distinct noradrenaline-induced astrocytic Ca 2+ and cAMP dynamics during startle and fear conditioning.
Generation of locus coeruleus norepinephrine neurons from human pluripotent stem cells
Central norepinephrine (NE) neurons, located mainly in the locus coeruleus (LC), are implicated in diverse psychiatric and neurodegenerative diseases and are an emerging target for drug discovery. To facilitate their study, we developed a method to generate 40–60% human LC-NE neurons from human pluripotent stem cells. The approach depends on our identification of ACTIVIN A in regulating LC-NE transcription factors in dorsal rhombomere 1 (r1) progenitors. In vitro generated human LC-NE neurons display extensive axonal arborization; release and uptake NE; and exhibit pacemaker activity, calcium oscillation and chemoreceptor activity in response to CO 2 . Single-nucleus RNA sequencing (snRNA-seq) analysis at multiple timepoints confirmed NE cell identity and revealed the differentiation trajectory from hindbrain progenitors to NE neurons via an ASCL1 -expressing precursor stage. LC-NE neurons engineered with an NE sensor reliably reported extracellular levels of NE. The availability of functional human LC-NE neurons enables investigation of their roles in psychiatric and neurodegenerative diseases and provides a tool for therapeutics development. Norepinephrine neurons, a drug target for neurologic diseases, are produced from stem cells.
Developmental origins of central norepinephrine neuron diversity
The authors study the lineal origins of norepinephrine (NE) neurons in the mouse hindbrain. They identify four genetically separable subpopulations of NE neurons, each with distinct anatomical location, axonal morphology and pattern of efferent projections. One unexpected finding is a projection to the prefrontal cortex that originates from outside the locus coeruleus. Central norepinephrine-producing neurons comprise a diverse population of cells differing in anatomical location, connectivity, function and response to disease and environmental insult. The mechanisms that generate this diversity are unknown. Here we elucidate the lineal relationship between molecularly distinct progenitor populations in the developing mouse hindbrain and mature norepinephrine neuron subtype identity. We have identified four genetically separable subpopulations of mature norepinephrine neurons differing in their anatomical location, axon morphology and efferent projection pattern. One of the subpopulations showed an unexpected projection to the prefrontal cortex, challenging the long-held belief that the locus coeruleus is the sole source of norepinephrine projections to the cortex. These findings reveal the embryonic origins of central norepinephrine neurons and provide multiple molecular points of entry for future study of individual norepinephrine circuits in complex behavioral and physiological processes including arousal, attention, mood, memory, appetite and homeostasis.
Chemosensory modulation of neural circuits for sodium appetite
Sodium is the main cation in the extracellular fluid and it regulates various physiological functions. Depletion of sodium in the body increases the hedonic value of sodium taste, which drives animals towards sodium consumption 1 , 2 . By contrast, oral sodium detection rapidly quenches sodium appetite 3 , 4 , suggesting that taste signals have a central role in sodium appetite and its satiation. Nevertheless, the neural mechanisms of chemosensory-based appetite regulation remain poorly understood. Here we identify genetically defined neural circuits in mice that control sodium intake by integrating chemosensory and internal depletion signals. We show that a subset of excitatory neurons in the pre-locus coeruleus express prodynorphin, and that these neurons are a critical neural substrate for sodium-intake behaviour. Acute stimulation of this population triggered robust ingestion of sodium even from rock salt, while evoking aversive signals. Inhibition of the same neurons reduced sodium consumption selectively. We further demonstrate that the oral detection of sodium rapidly suppresses these sodium-appetite neurons. Simultaneous in vivo optical recording and gastric infusion revealed that sodium taste—but not sodium ingestion per se—is required for the acute modulation of neurons in the pre-locus coeruleus that express prodynorphin, and for satiation of sodium appetite. Moreover, retrograde-virus tracing showed that sensory modulation is in part mediated by specific GABA (γ-aminobutyric acid)-producing neurons in the bed nucleus of the stria terminalis. This inhibitory neural population is activated by sodium ingestion, and sends rapid inhibitory signals to sodium-appetite neurons. Together, this study reveals a neural architecture that integrates chemosensory signals and the internal need to maintain sodium balance. Sodium appetite in mice is driven by a neural circuit that is focused on neurons of the pre-locus coeruleus and integrates the sensory detection of sodium and internal signals.
Increased locus coeruleus tonic activity causes disengagement from a patch-foraging task
High levels of locus coeruleus (LC) tonic activity are associated with distraction and poor performance within a task. Adaptive gain theory (AGT; Aston-Jones & Cohen, 2005 ) suggests that this may reflect an adaptive function of the LC, encouraging search for more remunerative opportunities in times of low utility. Here, we examine whether stimulating LC tonic activity using designer receptors (DREADDs) promotes searching for better opportunities in a patch-foraging task as the value of a patch diminishes. The task required rats to decide repeatedly whether to exploit an immediate but depleting reward within a patch or to incur the cost of a time delay to travel to a new, fuller patch. Similar to behavior associated with high LC tonic activity in other tasks, we found that stimulating LC tonic activity impaired task performance, resulting in reduced task participation and increased response times and omission rates. However, this was accompanied by a more specific, predicted effect: a significant tendency to leave patches earlier, which was best explained by an increase in decision noise rather than a systematic bias to leave earlier (i.e., at higher values). This effect is consistent with the hypothesis that high LC tonic activity favors disengagement from current behavior, and the pursuit of alternatives, by augmenting processing noise. These results provide direct causal evidence for the relationship between LC tonic activity and flexible task switching proposed by AGT.