Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
920 result(s) for "Lumbar Vertebrae - anatomy "
Sort by:
Assessment of Pelvic-Lumbar-Thigh Biomechanics to Optimize The Childbirth Position: An “In Vivo” Innovative Biomechanical Study
The study aimed to assess the associations between the pelvis orientation, lumbar curve and thigh postures throughout pregnancy in a population of healthy women. Additionally, optimal mechanical birth conditions in terms of the pelvic inlet and lumbar curve were researched. The individuals’ posture was assessed with three-dimensional motion analysis and the lumbar curve with the Epionics SPINE system. The association between the hip joint angles (flexion and abduction), the pelvis external conjugate, and lumbar curve position was assessed with a generalized linear mixed model (GLMM) adjusted to individuals’ characteristics. Joint laxity was assessed with a modified Jobbin’s extensometer. For all of the subjects, hip flexion and hip abduction were significantly associated with the angle between the external conjugate and spine, with higher correlation in the multivariate regression model. The association between hip flexion and the lumbar curve was less significant in multivariate than univariate regression analysis. Optimal birth conditions were never reached. The findings contribute to the understanding of the association between the hip position (flexion and abduction), pelvic orientation, and lumbar curve adjusted for joint laxity in healthy pregnant women. They lay the groundwork for future research in the field of obstetrical biomechanics.
Comparison of eight published static finite element models of the intact lumbar spine: Predictive power of models improves when combined together
Finite element (FE) model studies have made important contributions to our understanding of functional biomechanics of the lumbar spine. However, if a model is used to answer clinical and biomechanical questions over a certain population, their inherently large inter-subject variability has to be considered. Current FE model studies, however, generally account only for a single distinct spinal geometry with one set of material properties. This raises questions concerning their predictive power, their range of results and on their agreement with in vitro and in vivo values. Eight well-established FE models of the lumbar spine (L1-5) of different research centers around the globe were subjected to pure and combined loading modes and compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges, and their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with published median in vitro values. However, the ranges of predictions were larger and exceeded those reported in vitro, especially for the facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with measured in vivo values. In light of high inter-subject variability, the generalization of results of a single model to a population remains a concern. This study demonstrated that the pooled median of individual model results, similar to a probabilistic approach, can be used as an improved predictive tool in order to estimate the response of the lumbar spine.
The evaluation of lumbar paraspinal muscle quantity and quality using the Goutallier classification and lumbar indentation value
PurposeThe cross-sectional area and fat infiltration are accepted as standard parameters for quantitative and qualitative evaluation of muscle degeneration. However, they are time-consuming, which prevents them from being used in a clinical setting. The aim of this study was to analyze the relationship between lumbar muscle degeneration and spinal degenerative disorders, using lumbar indentation value (LIV) as quantitative and Goutallier classification as qualitative measures.MethodsThis is a retrospective analysis of kinematic magnetic resonance images (kMRI). Two-hundred and thirty patients with kMRIs taken in weight-bearing positions were selected randomly. The LIV and Goutallier classification were evaluated at L4–5. The correlation of these two parameters with patients’ age, gender, lumbar lordosis (LL), range of motion, disc degeneration, disc height, and Modic change were analyzed.ResultsThere was no significant trend of LIV among the different grades of Goutallier classification (p = 0.943). There was a significant increase in age with higher grades of Goutallier classification (p < 0.001). In contrast, there was no correlation between LIV and age (p = 0.799). The Goutallier classification positively correlated with LL (r = 0.377) and severe disc degeneration (r = 0.249). The LIV positively correlated with LL (r = 0.476) and degenerative spondylolisthesis (r = 0.184). Multinomial logistic regression analysis showed that age (p = 0.026), gender (p = 0.003), and LIV (p < 0.001) were significant predictors for patients with low LL (< 10°).ConclusionLumbar muscle quantity and quality showed specific correlation with age and spine disorders. Additionally, LL can be predicted by the muscle quantity, but not the quality. These time-saving evaluation tools potentially accelerate the study of lumbar muscles.Graphical abstractThese slides can be retrieved under Electronic Supplementary Material.
Insights into the lower torso in late Miocene hominoid Oreopithecus bambolii
Oreopithecus bambolii (8.3–6.7 million years old) is the latest known hominoid from Europe, dating to approximately the divergence time of the Pan-hominin lineages. Despite being the most complete nonhominin hominoid in the fossil record, the O. bambolii skeleton IGF 11778 has been, for decades, at the center of intense debate regarding the species’ locomotor behavior, phylogenetic position, insular paleoenvironment, and utility as a model for early hominin anatomy. Here we investigate features of the IGF 11778 pelvis and lumbar region based on torso preparations and supplemented by other O. bambolii material. We correct several crucial interpretations relating to the IGF 11778 anterior inferior iliac spine and lumbar vertebrae structure and identifications. We find that features of the early hominin Ardipithecus ramidus torso that are argued to have permitted both lordosis and pelvic stabilization during upright walking are not present in O. bambolii. However, O. bambolii also lacks the complete reorganization for torso stiffness seen in extant great apes (i.e., living members of the Hominidae), and is more similar to large hylobatids in certain aspects of torso form. We discuss the major implications of the O. bambolii lower torso anatomy and how O. bambolii informs scenarios of hominoid evolution.
Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects
Purpose Sagittal balance analysis has gained importance and the measure of the radiographic spinopelvic parameters is now a routine part of many interventions of spine surgery. Indeed, surgical correction of lumbar lordosis must be proportional to the pelvic incidence (PI). The compensatory mechanisms [pelvic retroversion with increased pelvic tilt (PT) and decreased thoracic kyphosis] spontaneously reverse after successful surgery. Materials and methods This study is the first to provide 3D standing spinopelvic reference values from a large database of Caucasian ( n  = 137) and Japanese ( n  = 131) asymptomatic subjects. Results The key spinopelvic parameters [e.g., PI, PT, sacral slope (SS)] were comparable in Japanese and Caucasian populations. Three equations, namely lumbar lordosis based on PI, PT based on PI and SS based on PI, were calculated after linear regression modeling and were comparable in both populations: lumbar lordosis (L1–S1) = 0.54*PI + 27.6, PT = 0.44*PI − 11.4 and SS = 0.54*PI + 11.90. Conclusion We showed that the key spinopelvic parameters obtained from a large database of healthy subjects were comparable for Causasian and Japanese populations. The normative values provided in this study and the equations obtained after linear regression modeling could help to estimate pre-operatively the lumbar lordosis restoration and could be also used as guidelines for spinopelvic sagittal balance.
Thoracolumbar spine model with articulated ribcage for the prediction of dynamic spinal loading
Musculoskeletal modeling offers an invaluable insight into the spine biomechanics. A better understanding of thoracic spine kinetics is essential for understanding disease processes and developing new prevention and treatment methods. Current models of the thoracic region are not designed for segmental load estimation, or do not include the complex construct of the ribcage, despite its potentially important role in load transmission. In this paper, we describe a numerical musculoskeletal model of the thoracolumbar spine with articulated ribcage, modeled as a system of individual vertebral segments, elastic elements and thoracic muscles, based on a previously established lumbar spine model and data from the literature. The inverse dynamics simulations of the model allow the prediction of spinal loading as well as costal joints kinetics and kinematics. The intradiscal pressure predicted by the model correlated well (R2=0.89) with reported intradiscal pressure measurements, providing a first validation of the model. The inclusion of the ribcage did not affect segmental force predictions when the thoracic spine did not perform motion. During thoracic motion tasks, the ribcage had an important influence on the predicted compressive forces and muscle activation patterns. The compressive forces were reduced by up to 32%, or distributed more evenly between thoracic vertebrae, when compared to the predictions of the model without ribcage, for mild thoracic flexion and hyperextension tasks, respectively. The presented musculoskeletal model provides a tool for investigating thoracic spine loading and load sharing between vertebral column and ribcage during dynamic activities. Further validation for specific applications is still necessary.
The Accuracy of a Method for Printing Three-Dimensional Spinal Models
To study the morphology of the human spine and new spinal fixation methods, scientists require cadaveric specimens, which are dependent on donation. However, in most countries, the number of people willing to donate their body is low. A 3D printed model could be an alternative method for morphology research, but the accuracy of the morphology of a 3D printed model has not been determined. Forty-five computed tomography (CT) scans of cervical, thoracic and lumbar spines were obtained, and 44 parameters of the cervical spine, 120 parameters of the thoracic spine, and 50 parameters of the lumbar spine were measured. The CT scan data in DICOM format were imported into Mimics software v10.01 for 3D reconstruction, and the data were saved in .STL format and imported to Cura software. After a 3D digital model was formed, it was saved in Gcode format and exported to a 3D printer for printing. After the 3D printed models were obtained, the above-referenced parameters were measured again. Paired t-tests were used to determine the significance, set to P<0.05, of all parameter data from the radiographic images and 3D printed models. Furthermore, 88.6% of all parameters of the cervical spine, 90% of all parameters of the thoracic spine, and 94% of all parameters of the lumbar spine had Intraclass Correlation Coefficient (ICC) values >0.800. The other ICC values were <0.800 and >0.600; none were <0.600. In this study, we provide a protocol for printing accurate 3D spinal models for surgeons and researchers. The resulting 3D printed model is inexpensive and easily obtained for spinal fixation research.
Augmented reality-based navigation increases precision of pedicle screw insertion
Background Precise insertion of pedicle screws is important to avoid injury to closely adjacent neurovascular structures. The standard method for the insertion of pedicle screws is based on anatomical landmarks (free-hand technique). Head-mounted augmented reality (AR) devices can be used to guide instrumentation and implant placement in spinal surgery. This study evaluates the feasibility and precision of AR technology to improve precision of pedicle screw insertion compared to the current standard technique. Methods Two board-certified orthopedic surgeons specialized in spine surgery and two novice surgeons were each instructed to drill pilot holes for 40 pedicle screws in eighty lumbar vertebra sawbones models in an agar-based gel. One hundred and sixty pedicles were randomized into two groups: the standard free-hand technique (FH) and augmented reality technique (AR). A 3D model of the vertebral body was superimposed over the AR headset. Half of the pedicles were drilled using the FH method, and the other half using the AR method. Results The average minimal distance of the drill axis to the pedicle wall (MAPW) was similar in both groups for expert surgeons (FH 4.8 ± 1.0 mm vs. AR 5.0 ± 1.4 mm, p = 0.389) but for novice surgeons (FH 3.4 mm ± 1.8 mm, AR 4.2 ± 1.8 mm, p = 0.044). Expert surgeons showed 0 primary drill pedicle perforations (PDPP) in both the FH and AR groups. Novices showed 3 (7.5%) PDPP in the FH group and one perforation (2.5%) in the AR group, respectively ( p > 0.005). Experts showed no statistically significant difference in average secondary screw pedicle perforations (SSPP) between the AR and the FH set 6-, 7-, and 8-mm screws ( p > 0.05). Novices showed significant differences of SSPP between most groups: 6-mm screws, 18 (45%) vs. 7 (17.5%), p = 0.006; 7-mm screws, 20 (50%) vs. 10 (25%), p = 0.013; and 8-mm screws, 22 (55%) vs. 15 (37.5%), p = 0.053, in the FH and AR group, respectively. In novices, the average optimal medio-lateral convergent angle (oMLCA) was 3.23° (STD 4.90) and 0.62° (STD 4.56) for the FH and AR set screws ( p = 0.017), respectively. Novices drilled with a higher precision with respect to the cranio-caudal inclination angle (CCIA) category ( p = 0.04) with AR. Conclusion In this study, the additional anatomical information provided by the AR headset superimposed to real-world anatomy improved the precision of drilling pilot holes for pedicle screws in a laboratory setting and decreases the effect of surgeon’s experience. Further technical development and validations studies are currently being performed to investigate potential clinical benefits of the herein described AR-based navigation approach.
Imaging anatomy study related to unilateral biportal endoscopic lumbar spine surgery
Purpose To provide lumbar spine anatomical parameters relevant to the UBE technique and explore their intraoperative application. Methods CT imaging data processed by Mimics for parametric measurements, including laminar abduction angle (LAA), laminar slope angle (LSA), minimum laminar height (MLH), distance between the inferior margin of the lamina and attachment of the ligamentum flavum onto the cephalad lamina (DLL), distance between the initial point and the middle of the articular process (DIA), and distance from the inferior margin of the lamina to the inferior border of the vertebral body (DLV), and were manually measured. Results LAA and DIA gradually increase from L1 to L5. At L1, the DIA is approximately the length of 2 drill bits with a diameter of 3 mm (male: 7.77 ± 1.39 mm, female: 7.22 ± 1.09 mm), while at L5, it can reach the length of 4–5 drill bits (male: 14.96 ± 2.24 mm, female: 13.67 ± 2.33 mm). MLH, DLL, and DLV reach their maximum values at the L3 and decrease toward the cranial and caudal ends. The DLL is smallest at L5 (male: 9.58 ± 1.90 mm, female: 9.38 ± 2.14 mm), equivalent to the length of 3 drill bits, while the DLL at L3 is the length of 4–5 drill bits (male: 14.17 ± 2.13 mm, female: 14.01 ± 2.07 mm). Conclusion Referring to the drill diameter during surgery can mark the extent of laminotomy. The characteristics of vertebral plate angles at different lumbar levels can provide references for preoperative incision design.
Association of paraspinal muscle water–fat MRI-based measurements with isometric strength measurements
ObjectivesChemical shift encoding-based water–fat MRI derived proton density fat fraction (PDFF) of the paraspinal muscles has been emerging as a surrogate marker in subjects with sarcopenia, lower back pain, injuries and neuromuscular disorders. The present study investigates the performance of paraspinal muscle PDFF and cross-sectional area (CSA) in predicting isometric muscle strength.MethodsTwenty-six healthy subjects (57.7% women; age: 30 ± 6 years) underwent 3T axial MRI of the lumbar spine using a six-echo 3D spoiled gradient echo sequence for chemical shift encoding-based water–fat separation. Erector spinae and psoas muscles were segmented bilaterally from L2 level to L5 level to determine CSA and PDFF. Muscle flexion and extension maximum isometric torque values [Nm] at the back were measured with an isokinetic dynamometer.ResultsSignificant correlations between CSA and muscle strength measurements were observed for erector spinae muscle CSA (r = 0.40; p = 0.044) and psoas muscle CSA (r = 0.61; p = 0.001) with relative flexion strength. Erector spinae muscle PDFF correlated significantly with relative muscle strength (extension: r = -0.51; p = 0.008; flexion: r = -0.54; p = 0.005). Erector spinae muscle PDFF, but not CSA, remained a statistically significant (p < 0.05) predictor of relative extensor strength in multivariate regression models (R2adj = 0.34; p = 0.002).ConclusionsPDFF measurements improved the prediction of paraspinal muscle strength beyond CSA. Therefore, chemical shift encoding-based water–fat MRI may be used to detect subtle changes in the paraspinal muscle composition.Key Points• We investigated the association of paraspinal muscle fat fraction based on chemical shift encoding-based water–fat MRI with isometric strength measurements in healthy subjects.• Erector spinae muscle PDFF correlated significantly with relative muscle strength.• PDFF measurements improved prediction of paraspinal muscle strength beyond CSA.