Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
5,852 result(s) for "Lumbar Vertebrae - diagnostic imaging"
Sort by:
A Randomized, Controlled Trial of Fusion Surgery for Lumbar Spinal Stenosis
In this randomized, controlled trial comparing decompression surgery alone with decompression surgery plus fusion surgery for patients with lumbar spinal stenosis, there was no significant between-group difference in clinical outcomes at 2 and 5 years. Lumbar spinal stenosis is caused by a gradual narrowing of the spinal canal. Patients with lumbar spinal stenosis typically present with low back pain and leg pain, which occur especially when they are walking. This degenerative condition severely restricts function, walking ability, and quality of life. Lumbar spinal stenosis has become the most common indication for spinal surgery, 1 – 4 and studies have shown that surgical treatment in selected patients is more successful than conservative alternatives. 5 – 7 As the use of surgery to treat lumbar spinal stenosis has increased during the past decades, so has the complexity of the surgical procedures. . . .
Fracture Prevention with Infrequent Zoledronate in Women 50 to 60 Years of Age
Zoledronate administered every 12 to 18 months prevents fractures in older women. Ten years after initiation of this trial, zoledronate administered at baseline and 5 years prevented vertebral fracture.
Effects of the anti-RANKL antibody denosumab on joint structural damage in patients with rheumatoid arthritis treated with conventional synthetic disease-modifying antirheumatic drugs (DESIRABLE study): a randomised, double-blind, placebo-controlled phase 3 trial
ObjectiveTo evaluate the efficacy of denosumab in suppressing joint destruction when added to conventional synthetic disease-modifying antirheumatic drug (csDMARD) therapy in patients with rheumatoid arthritis (RA).MethodsThis was a multi-centre, randomised, double-blind, parallel-group, placebo-controlled phase 3 study in Japan. Patients with RA aged ≥20 years receiving csDMARDs were randomly assigned (1:1:1) to denosumab 60 mg every 3 months (Q3M), denosumab 60 mg every 6 months (Q6M) or placebo. The change in the modified total Sharp score (mTSS) and effect on bone mineral density (BMD) at 12 months was evaluated.ResultsIn total, 654 patients received the trial drugs. Denosumab groups showed significantly less progression of joint destruction. The mean changes in the mTSS at 12 months were 1.49 (95% CI 0.99 to 1.99) in the placebo group, 0.99 (95% CI 0.49 to 1.49) in the Q6M group (p=0.0235) and 0.72 (95% CI 0.41 to 1.03) in the Q3M group (p=0.0055). The mean changes in bone erosion score were 0.98 (95% CI 0.65 to 1.31) in the placebo group, 0.51 (95% CI 0.22 to 0.80) in the Q6M group (p=0.0104) and 0.22 (95% CI 0.09 to 0.34) in the Q3M group (p=0.0001). No significant between-group difference was observed in the joint space narrowing score. The per cent change in lumbar spine (L1–L4) BMD in the placebo, Q6M and Q3M groups were −1.03%, 3.99% (p<0.0001) and 4.88% (p<0.0001). No major differences were observed among safety profiles.ConclusionsDenosumab inhibits the progression of joint destruction, increases BMD and is well tolerated in patients with RA taking csDMARD.
A comparative study of robot-assisted navigation versus C-arm fluoroscopy in percutaneous pedicle screw fixation for the treatment of thoracolumbar fractures
To evaluate the clinical efficacy of ZhuZheng robot-assisted versus C-arm fluoroscopy-guided percutaneous pedicle screw fixation (PPSF) in the treatment of thoracolumbar burst fractures. A retrospective analysis was conducted on 86 patients with thoracolumbar burst fractures treated at our institution between March 2022 and August 2023. The cohort included 46 males and 40 females, aged 27 to 69 years. Patients were assigned to either the robot-assisted group ( n  = 41) or the conventional C-arm fluoroscopy group ( n  = 45) according to intraoperative navigation method. Baseline characteristics, including gender ratio and body mass index (BMI), were comparable between the two groups ( P  > 0.05). All patients underwent segmental fixation. Intraoperative parameters such as fluoroscopy frequency, operative time, and estimated blood loss were recorded. The accuracy of screw placement was assessed using postoperative CT at day 3 and graded according to the Gertzbein-Robbins scale. Pain was evaluated using the Visual Analogue Scale (VAS) preoperatively and at 1 day, 3 days, and 1 month postoperatively. Radiological assessments included Cobb angle and anterior vertebral height ratio at baseline, 3 days, 1 month, and 6 months postoperatively. Statistical analyses were performed using the t-test and Mann-Whitney U test. The robot-assisted group had significantly shorter operative time, reduced intraoperative blood loss, lower radiation dose, and fewer fluoroscopy exposures compared to the conventional group (all P  < 0.05). No perioperative complications occurred in either group during follow-up. The screw placement accuracy (grades A + B) was significantly higher in the robot-assisted group (98.4%, 242/246) than in the conventional group (90.4%, 244/270; P  < 0.05). VAS pain scores at postoperative day 1 and day 3 were significantly lower in the robot-assisted group; no significant difference was observed at 1 month. There were no significant intergroup differences in the postoperative Cobb angle or anterior vertebral height ratio at any time point ( P  > 0.05). Robot-assisted orthopedic surgery demonstrates significant advantages in improving screw placement accuracy, reducing intraoperative blood loss, shortening operative time, and minimizing radiation exposure and fluoroscopy frequency, thereby offering improved clinical outcomes in the management of thoracolumbar burst fractures.
Clinical comparison of unilateral biportal endoscopic technique versus open microdiscectomy for single-level lumbar discectomy: a multicenter, retrospective analysis
Background The unilateral biportal endoscopic (UBE) technique is a minimally invasive procedure for spinal surgery, while open microscopic discectomy is the most common surgical treatment for ruptured or herniated discs of the lumbar spine. A new endoscopic technique that uses a UBE approach has been applied to conventional arthroscopic systems for the treatment of spinal disease. In this study, we aimed to compare and evaluate the perioperative parameters and clinical outcomes, including recovery from surgery, pain and life quality modification, patient’s satisfaction, and complications, between UBE and open lumbar microdiscectomy (OLM) for single-level discectomy procedures. Methods This study included 141 patients with degenerative disc disease requiring discectomy at a single level from L2–L3 to L5–S1. A total of 60 and 81 patients underwent UBE and OLM, respectively. Analysis was based on comparison of perioperative metrics, operation time (OT); estimated blood loss (EBL); length of hospital stay (HS); clinical outcomes, including assessment using the Visual Analogue Scale (VAS) and Oswestry Disability Index (ODI); patient satisfaction (the MacNab score); and the incidence of reoperation and complications. Results The study cohort was 56.7% women, and the mean patient age was 50.98 ± 18.23 years. The mean VAS (the back and leg), MacNab score, and ODI improved significantly from the preoperative period to the last follow-up (12.92 ± 3.92) in both groups ( p  < 0.001). One week after operation, the back VAS score in the UBE group showed significantly more improvement than that in the OLM group. However, the 1-week, 3-month, and 12-month VAS (the back and leg), ODI improvement, modified MacNab score, and OT were not significantly different between the two groups. In the UBE group, EBL (34.67 ± 16.92) was smaller and HS (2.77 ± 1.2) was shorter than that of the OLM group (140.05 ± 57.8, 6.37 ± 1.39). However, OT (70.15 ± 22.0) was longer in the UBE group than in the OLM group (60.38 ± 15.5), and the difference was statistically significant. Meanwhile, the differences in the rate of surgical conversion and complications between the two groups were not statistically significant. Conclusions The UBE for single-level discectomy yielded similar clinical outcomes to OLM, including pain control, functional disability, and patient satisfaction, but incurred minimal EBL, HS, and postoperative back pain. Trial registration Not applicable.
Vertebral bone attenuation on low-dose chest CT: quantitative volumetric analysis for bone fragility assessment
SummaryThis study evaluated the use of low-dose chest computed tomography (LDCT) for detecting bone fragility. LDCT-measured vertebral bone attenuation by volumetric methods showed good correlation with bone mineral density (BMD) measured by dual-energy x-ray absorptiometry (DXA, and good diagnostic performance for identifying osteoporosis and compression fractures. The results of this study suggest the feasibility of obtaining comprehensive information on bone health in subjects undergoing LDCT.IntroductionOsteoporosis is a prevalent but underdiagnosed disease that increases fracture risk. This study evaluated the utility of vertebral attenuation derived from low-dose chest computed tomography (LDCT) compared to dual-energy x-ray absorptiometry (DXA) for detecting bone fragility.MethodsA total of 232 subjects (78 men and 154 women) aged above 50 years who underwent both LDCT and DXA within 30 days were evaluated. LDCT-measured bone attenuation in Hounsfield units (HU) of four vertebrae (T4, T7, T10, and L1) was evaluated using volumetric methods for correlation with DXA-measured bone mineral density (BMD) and for the diagnosis of compression fractures, osteoporosis, and low BMD (osteoporosis or osteopenia) in men and women, with DXA measurements as the reference standard.ResultsThe average attenuation of the four vertebrae showed strong correlation with DXA-measured BMD of the lumbar spine (r = 0.726, p < 0.05). In receiver-operating characteristic (ROC) analyses, the area under the curve (AUC) across LDCT-measured thresholds of the average attenuation to distinguish compression fractures was 0.827, and a threshold of 129.5 HU yielded 90.9 % sensitivity and 64.4 % specificity. Similarly, average attenuation showed high AUCs and good diagnostic performance for detecting osteoporosis and low BMD in both men and women. Among 44 subjects with compression fractures, the average bone attenuation showed strong negative correlation with both the worst fracture grade (r = −0.525, p < 0.05) and cumulative fracture grade score (r = −0.633, p < 0.05).ConclusionLDCT-measured bone attenuation by volumetric methods showed good correlation with BMD measured by DXA and good diagnostic performance for identifying bone fragility.
Clinical and radiological evaluation of cage subsidence following oblique lumbar interbody fusion combined with anterolateral fixation
Background Cage subsidence (CS) was previously reported as one of the most common complications following oblique lumbar interbody fusion (OLIF). We aimed to assess the impacts of CS on surgical results following OLIF combined with anterolateral fixation, and determine its radiological characteristics as well as related risk factors. Methods Two hundred and forty-two patients who underwent OLIF at L4-5 and with a minimum 12 months follow-up were reviewed. Patients were divided into three groups according to the extent of disk height (DH) decrease during follow-up: no CS (DH decrease ≤ 2 mm), mild CS (2 mm < DH decrease ≤ 4 mm) and severe CS (DH decrease > 4 mm). The clinical and radiological results were compared between groups to evaluate radiological features, clinical effects and risk factors of CS. Results CS was identified in 79 (32.6%) patients, including 48 (19.8%) with mild CS and 31 (11.8%) with severe CS. CS was mainly identified within 1 month postoperatively, it did not progress after 3 months postoperatively, and more noted in the caudal endplate (44, 55.7%). In terms of clinical results, patients in the mild CS group were significantly worse than those in the no CS group, and patients in the severe CS group were significantly worse than those in the mild CS group. There was no significant difference in fusion rate between no CS (92.6%, 151/163) and mild CS (83.3%, 40/48) groups. However, significant lower fusion rate was observed in severe CS group (64.5%, 20/31) compared to no CS group. CS related risk factors included osteoporosis (OR = 5.976), DH overdistraction (OR = 1.175), flat disk space (OR = 3.309) and endplate injury (OR = 6.135). Conclusion CS following OLIF was an early postoperative complication. Higher magnitudes of CS were associated with worse clinical improvements and lower intervertebral fusion. Osteoporosis and endplate injury were significant risk factors for CS. Additionally, flat disk space and DH over-distraction were also correlated with an increased probability of CS.
The evaluation of lumbar paraspinal muscle quantity and quality using the Goutallier classification and lumbar indentation value
PurposeThe cross-sectional area and fat infiltration are accepted as standard parameters for quantitative and qualitative evaluation of muscle degeneration. However, they are time-consuming, which prevents them from being used in a clinical setting. The aim of this study was to analyze the relationship between lumbar muscle degeneration and spinal degenerative disorders, using lumbar indentation value (LIV) as quantitative and Goutallier classification as qualitative measures.MethodsThis is a retrospective analysis of kinematic magnetic resonance images (kMRI). Two-hundred and thirty patients with kMRIs taken in weight-bearing positions were selected randomly. The LIV and Goutallier classification were evaluated at L4–5. The correlation of these two parameters with patients’ age, gender, lumbar lordosis (LL), range of motion, disc degeneration, disc height, and Modic change were analyzed.ResultsThere was no significant trend of LIV among the different grades of Goutallier classification (p = 0.943). There was a significant increase in age with higher grades of Goutallier classification (p < 0.001). In contrast, there was no correlation between LIV and age (p = 0.799). The Goutallier classification positively correlated with LL (r = 0.377) and severe disc degeneration (r = 0.249). The LIV positively correlated with LL (r = 0.476) and degenerative spondylolisthesis (r = 0.184). Multinomial logistic regression analysis showed that age (p = 0.026), gender (p = 0.003), and LIV (p < 0.001) were significant predictors for patients with low LL (< 10°).ConclusionLumbar muscle quantity and quality showed specific correlation with age and spine disorders. Additionally, LL can be predicted by the muscle quantity, but not the quality. These time-saving evaluation tools potentially accelerate the study of lumbar muscles.Graphical abstractThese slides can be retrieved under Electronic Supplementary Material.
Efficacy of antibiotic treatment in patients with chronic low back pain and Modic changes (the AIM study): double blind, randomised, placebo controlled, multicentre trial
AbstractObjectiveTo assess the efficacy of three months of antibiotic treatment compared with placebo in patients with chronic low back pain, previous disc herniation, and vertebral endplate changes (Modic changes).DesignDouble blind, parallel group, placebo controlled, multicentre trial.SettingHospital outpatient clinics at six hospitals in Norway.Participants180 patients with chronic low back pain, previous disc herniation, and type 1 (n=118) or type 2 (n=62) Modic changes enrolled from June 2015 to September 2017.InterventionsPatients were randomised to three months of oral treatment with either 750 mg amoxicillin or placebo three times daily. The allocation sequence was concealed by using a computer generated number on the prescription.Main outcome measuresThe primary outcome was the Roland-Morris Disability Questionnaire (RMDQ) score (range 0-24) at one year follow-up in the intention to treat population. The minimal clinically important between group difference in mean RMDQ score was predefined as 4.ResultsIn the primary analysis of the total cohort at one year, the difference in the mean RMDQ score between the amoxicillin group and the placebo group was −1.6 (95% confidence interval −3.1 to 0.0, P=0.04). In the secondary analysis, the difference in the mean RMDQ score between the groups was −2.3 (−4.2 to−0.4, P=0.02) for patients with type 1 Modic changes and −0.1 (−2.7 to 2.6, P=0.95) for patients with type 2 Modic changes. Fifty patients (56%) in the amoxicillin group experienced at least one drug related adverse event compared with 31 (34%) in the placebo group.ConclusionsIn this study on patients with chronic low back pain and Modic changes at the level of a previous disc herniation, three months of treatment with amoxicillin did not provide a clinically important benefit compared with placebo. Secondary analyses and sensitivity analyses supported this finding. Therefore, our results do not support the use of antibiotic treatment for chronic low back pain and Modic changes.Trial registrationClinicalTrials.gov NCT02323412.
Accuracy of patient-specific template-guided vs. free-hand fluoroscopically controlled pedicle screw placement in the thoracic and lumbar spine: a randomized cadaveric study
Purpose Dorsal spinal instrumentation with pedicle screw constructs is considered the gold standard for numerous spinal pathologies. Screw misplacement is biomechanically disadvantageous and may create severe complications. The aim of this study was to assess the accuracy of patient-specific template-guided pedicle screw placement in the thoracic and lumbar spine compared to the free-hand technique with fluoroscopy. Methods Patient-specific targeting guides were used for pedicle screw placement from Th2–L5 in three cadaveric specimens by three surgeons with different experience levels. Instrumentation for each side and level was randomized (template-guided vs. free-hand). Accuracy was assessed by computed tomography (CT), considering perforations of <2 mm as acceptable (safe zone). Time efficiency, radiation exposure and dependencies on surgical experience were compared between the two techniques. Results 96 screws were inserted with an equal distribution of 48 screws (50 %) in each group. 58 % ( n  = 28) of template-guided (without fluoroscopy) vs. 44 % ( n  = 21) of free-hand screws (with fluoroscopy) were fully contained within the pedicle ( p  = 0.153). 97.9 % ( n  = 47) of template-guided vs. 81.3 % ( n  = 39) of free-hand screws were within the 2 mm safe zone ( p  = 0.008). The mean time for instrumentation per level was 01:14 ± 00:37 for the template-guided vs. 01:40 ± 00:59 min for the free-hand technique ( p  = 0.013), respectively. Increased radiation exposure was highly associated with lesser experience of the surgeon with the free-hand technique. Conclusions In a cadaver model, template-guided pedicle screw placement is faster considering intraoperative instrumentation time, has a higher accuracy particularly in the thoracic spine and creates less intraoperative radiation exposure compared to the free-hand technique.