Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
180
result(s) for
"Lumbar stiffness"
Sort by:
Myofascial force transmission between latissimus dorsi and contralateral gluteus maximus in runners: a cross-sectional study
by
Fonseca, Sérgio Teixeira
,
Murta, Bárbara Junqueira
,
Schleip, Robert
in
Adult
,
Biomechanical Phenomena
,
Buttocks - physiology
2024
The anatomical connection between latissimus dorsi (LD), thoracolumbar fascia, and contralateral gluteus maximus (GM) enables myofascial force transmission (MFT) between the shoulder, trunk, and hip. This study investigates whether regular sports practice, specifically running, influences this MFT pathway. Given the potential changes in tissue stiffness from sports practice and the importance of this property for MFT, we hypothesize that runners may exhibit greater MFT between the LD and GM, resulting in altered passive properties of the lumbar and hip regions during LD contraction. This study aimed to investigate whether runners present a higher modification in lumbar stiffness and passive properties of the contralateral hip due to LD contraction than sedentary individuals. The lumbar stiffness, hip resting position, passive hip torque, and stiffness of fifty-four individuals were assessed using an indentometer and an isokinetic dynamometer, respectively, in two conditions: LD relaxed, and LD contracted. The main and interaction effects were assessed using a two-way ANOVA. The LD contraction increased lumbar stiffness (p < 0.001; ηp2 = 0.50), externally rotated the hip resting position and increased the passive hip torque and stiffness (p < 0.05; ηp2 > 0.1) in both groups. In addition, runners presented higher lumbar stiffness compared to sedentary in the LD contracted condition (p = 0.017, ESd = 0.54). Although runners exhibited increased lumbar stiffness during LD contraction, the MFT from the shoulder to the hip joint occurred similarly in both groups.
Journal Article
Is postural control during unstable sitting a proxy measure for determinants associated with lumbar stability?
by
Preuss, Richard
,
Ludvig, Daniel
,
Larivière, Christian
in
Adult
,
Anticipatory postural adjustments
,
Back pain
2020
The aim of this study was to test whether determinants associated with lumbar stability can predict performance during unstable sitting (trunk postural control - TPC). If confirmed, unstable sitting could be viewed as a proxy measure for these determinants.
Wobbling chair motion was measured in 58 subjects with an inertial sensor, and six outcomes were computed (mean frequency and velocity, frequency dispersion, two variables from the sway density analysis and Lyapunov exponent - short interval) to represent TPC performance. Subjects also performed five other trunk neuromuscular tests to quantify the thickness of back and abdominal muscles and connective tissues, lumbar proprioception, lumbar stiffness, feedforward and feedback control mechanisms, and trunk/muscle coordination.
Four to five predictors explained between 36 and 47% of TPC outcomes variance, as determined with multivariate analyses. These predictors were mainly related to (1) angular kinematic parameters of the pelvis or lumbar spine following rapid arm movement, (2) lumbar intrinsic stiffness, (3) thickness of perimuscular connective tissues surrounding specific abdominal muscles, (4) activation onsets of specific trunk muscles (IO/TrA and iliocostalis lumborum) before rapid arm movement, and (5) percent thickness change of internal oblique (IO) and transversus abdominis (TrA) muscles. Lumbar proprioception and reflex responses were not predictive, possibly due to the lack of appropriate measurements.
These findings support the use of TPC in unstable sitting as a proxy measure for determinants associated with lumbar stability. This might be useful in research and clinical settings, considering time and equipment constraints associated with measuring these determinants individually.
Journal Article
Impact of lumbar fusion on spinopelvic sagittal alignment from standing to sitting position: which factor is associated with postoperative functional limitations due to lumbar stiffness?
2023
PurposeTo investigate the impact of lumbar fusion on spinopelvic sagittal alignment from standing to sitting position and the influencing factors of postoperative functional limitations due to lumbar stiffness.MethodsA total of 107 patients who undertook posterior lumbar interbody fusion were included. Patients were divided into two groups: Group A (lumbosacral fusion; n = 43) and Group B (floating fusion; n = 64). Spinopelvic parameters in standing and sitting position including pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), lumbar lordosis (LL), fusion segment lordosis (FSL), upper residual lordosis (URL), lower residual lordosis (LRL), thoracic kyphosis (TK), thoracolumbar kyphosis (TLK), sagittal vertical axis (SVA) and T1 pelvic angle (TPA) were measured before and after lumbar fusion. The Lumbar Stiffness Disability Index (LSDI) was used to assess functional limitations due to lumbar stiffness. ResultsAccompanied by increased postoperative LSDI, the values of changes from standing to sitting (∆) were reduced in some parameters compared with the preoperative values. ∆PT and ∆SS significantly decreased in both two groups. In Group A, ∆LL significantly decreased with increased ∆URL. In Group B, ∆LL, ∆URL and ∆LRL showed no significant difference before and after surgery. Multiple linear regression analysis showed that age and ∆PT independently influenced the postoperative LSDI in Group A.ConclusionAfter lumbar fusion, changes of lumbopelvic sagittal parameters from standing to sitting would be restricted. Adjacent segment lordosis could partially compensate for this restriction. For patients with lumbosacral fusion, postoperative functional limitations due to lumbar stiffness were related to age and the postoperative ∆PT from standing to sitting.
Journal Article
Changes in pain sensitivity and spinal stiffness in relation to responder status following spinal manipulative therapy in chronic low Back pain: a secondary explorative analysis of a randomized trial
by
Schiøttz-Christensen, Berit
,
Kawchuk, Gregory Neil
,
O’Neill, Søren
in
Back pain
,
Back surgery
,
Care and treatment
2021
Background
In a prior randomized trial, we demonstrated that participants receiving spinal manipulative therapy at a pain-sensitive segment instead of a stiff segment experienced increased mechanical pressure pain thresholds. We hypothesized that the targeted segment mediated this increase through a segment-dependent neurophysiological reflective pathway. Presently, it is not known if this decrease in pain sensitivity is associated with clinical improvement. Therefore, we performed an explorative analysis to examine if changes in experimental pain sensitivity (mechanical and thermal) and lumbar stiffness were further dependent on clinical improvement in disability and patient-reported low back pain.
Methods
This study is a secondary explorative analysis of data from the randomized trial that compared 132 participants with chronic low back pain who received lumbar spinal manipulative therapy applied at either i) the stiffest segment or ii) the segment having the lowest pain threshold (i.e., the most pain-sensitive segment). We collected data at baseline, after the fourth session of spinal manipulation, and at 14-days follow-up. Participants were dichotomized into responders/non-responders using different clinical variables (disability and patient-reported low back pain) with varying threshold values (0, 30, and 50% improvement). Mixed models were used to assess changes in experimental outcomes (stiffness and pain sensitivity). The fixed interaction terms were time, segment allocation, and responder status.
Results
We observed a significant increase in mechanical pressure pain thresholds for the group, which received spinal manipulative therapy at the most pain-sensitive segment independent of whether they improved clinically or not. Those who received spinal manipulation at the stiffest segment also demonstrated increased mechanical pain sensitivity, but only in the subgroup with clinical improvement. We did not observe any changes in lumbar stiffness.
Conclusion
Our results suggest the existence of two different mechanistic pathways associated with the spinal manipulation target. i) A decrease of mechanical pain sensitivity independent of clinical outcome (neurophysiological) and ii) a decrease as a reflection of the clinical outcome. Together, these observations may provide a novel framework that improves our understanding of why some respond to spinal manipulative therapy while others do not.
Trial registration
ClinicalTrials.gov
identifier: NCT04086667 registered retrospectively September 11th 2019.
Journal Article
The relationship between submaximal activity of the lumbar extensor muscles and lumbar posteroanterior stiffness
1999
Some patients with low back pain are thought to have increased lumbar posteroanterior (PA) stiffness. Increased activity of the lumbar extensors could contribute to this stiffness. This activity may be seen when a PA force is applied and is thought to represent much less force than occurs with a maximal voluntary contraction (MVC). Although MVCs of the lumbar extensors are known to increase lumbar PA stiffness, the effect of small amounts of voluntary contraction is not known. In this study, the effect of varying amounts of voluntary isometric muscle activity of the lumbar extensors on lumbar PA stiffness was examined.
Twenty subjects without low back pain, aged 26 to 45 years (X=34, SD=5.6), participated in the study.
Subjects were asked to perform an isometric MVC of their lumbar extensor muscles with their pelvis fixed by exerting a force against a steel plate located over their T4 spinous process. They were then asked to perform contractions generating force equivalent to 0%, 10%, 30%, 50%, and 100% of that obtained with an MVC. Posteroanterior stiffness at L4 was measured during these contractions.
A Friedman one-way analysis of variance for repeated measures demonstrated a difference in PA stiffness among all levels of muscle activity.
Voluntary contraction of the lumbar extensor muscles will result in an increase in lumbar PA stiffness even at low levels of activity.
Journal Article
Sensitivity of musculoskeletal model-based lumbar spinal loading estimates to type of kinematic input and passive stiffness properties
by
Byrne, Ryan M.
,
Zhang, Xudong
,
Aiyangar, Ameet K.
in
Adult
,
Biomechanical Phenomena
,
Compression
2020
The study investigated the potential for obtaining more accurate spine joint reaction force (JRF) estimates from musculoskeletal models by incorporating dynamic stereo X-ray imaging (DSX)-based in vivo lumbar vertebral rotational and translational kinematics compared to generic, rhythm (RHY)-based kinematics, while also observing the influence of accompanying inputs: intervertebral segment stiffness and neutral state. A full-body OpenSim® musculoskeletal model, constructed by combining existing lower- and upper-body models, was driven based on one volunteer’s (female; age 25; 60.8 kg; 176 cm) anthropometrics and kinematics from a series of upright standing and straight-legged dynamic lifting tasks. The lumbar spine portion was modified in a step-wise manner to observe effects of: (1) RHY vs. DSX lumbar kinematics; (2) No disc (bushing) stiffness (NBS); generic, linear bushing stiffness (LBS); subject-specific nonlinear bushing stiffness (NLBS); (3) Upright standing (UP) vs. Supine (SUP) neutral state; (4) Weight lifted: 4.5 kg vs. 13.6 kg. L4L5 JRF from 24 model variations based on combinations of aforementioned parameters were compared. Rhythm-based kinematics without translational components tends to over-predict JRF (31% and 39% for compression and shear, respectively) compared to DSX-based kinematics. Additionally, differences due to accompanying passive stiffness and neutral state choice combinations were even larger (>50%), indicating heightened demand on the quality of these accompanying inputs. The study not only highlights model sensitivity to choices made regarding the three primary inputs—kinematics, passive stiffness and neutral state— separately, but also how interactions between these choices can result in significant variability in joint loading estimates.
Journal Article
Insights into the lower torso in late Miocene hominoid Oreopithecus bambolii
2020
Oreopithecus bambolii (8.3–6.7 million years old) is the latest known hominoid from Europe, dating to approximately the divergence time of the Pan-hominin lineages. Despite being the most complete nonhominin hominoid in the fossil record, the O. bambolii skeleton IGF 11778 has been, for decades, at the center of intense debate regarding the species’ locomotor behavior, phylogenetic position, insular paleoenvironment, and utility as a model for early hominin anatomy. Here we investigate features of the IGF 11778 pelvis and lumbar region based on torso preparations and supplemented by other O. bambolii material. We correct several crucial interpretations relating to the IGF 11778 anterior inferior iliac spine and lumbar vertebrae structure and identifications. We find that features of the early hominin Ardipithecus ramidus torso that are argued to have permitted both lordosis and pelvic stabilization during upright walking are not present in O. bambolii. However, O. bambolii also lacks the complete reorganization for torso stiffness seen in extant great apes (i.e., living members of the Hominidae), and is more similar to large hylobatids in certain aspects of torso form. We discuss the major implications of the O. bambolii lower torso anatomy and how O. bambolii informs scenarios of hominoid evolution.
Journal Article
Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics
by
Vielma, Thomas
,
Kedzierska, Joanna
,
Affolter, Christian
in
Behavior
,
Biomechanical Phenomena
,
Cadavers
2020
Passive rotational stiffness of the osseo-ligamentous spine is an important input parameter for estimating in-vivo spinal loading using musculoskeletal models. These data are typically acquired from cadaveric testing. Increasingly, they are also estimated from subject-specific imaging-based finite element (FE) models, which are typically built from CT/MR data obtained in supine position and employ pure rotation kinematics. We explored the sensitivity of FE-based lumbar passive rotational stiffness to two aspects of functional in-vivo kinematics: (a) passive strain changes from supine to upright standing position, and (b) in-vivo coupled translation-rotation kinematics. We developed subject-specific FE models of four subjects’ L4L5 segments from supine CT images. Sagittally symmetric flexion was simulated in two ways: (i) pure flexion up to 12° under a 500 N follower load directly from the supine pose. (ii) First, a displacement-based approach was implemented to attain the upright pose, as measured using Dynamic Stereo X-ray (DSX) imaging. We then simulated in-vivo flexion using DSX imaging-derived kinematics. Datasets from weight-bearing motion with three different external weights [(4.5 kg), (9.1 kg), (13.6 kg)] were used. Accounting for supine-upright motion generated compressive pre-loads ≈ 468 N (±188 N) and a “pre-torque” ≈2.5 Nm (±2.2 Nm), corresponding to 25% of the reaction moment at 10° flexion (case (i)). Rotational stiffness estimates from DSX-based coupled translation-rotation kinematics were substantially higher compared to pure flexion. Reaction Moments were almost 90% and 60% higher at 5° and 10° of L4L5 flexion, respectively. Within-subject differences in rotational stiffness based on external weight were small, although between-subject variations were large.
Journal Article
Prediction of trunk muscle activation and spinal forces in adolescent idiopathic scoliosis during simulated trunk motion: A musculoskeletal modelling study
2024
Due to lack of reference validation data, the common strategy in characterizing adolescent idiopathic scoliosis (AIS) by musculoskeletal modelling approach consists in adapting structure and parameters of validated body models of adult individuals with physiological alignments. Until now, only static postures have been replicated and investigated in AIS subjects. When aiming to simulate trunk motion, two critical factors need consideration: how distributing movement along the vertebral motion levels (lumbar spine rhythm), and if neglecting or accounting for the contribution of the stiffness of the motion segments (disc stiffness). The present study investigates the effect of three different lumbar spine rhythms and absence/presence of disc stiffness on trunk muscle imbalance in the lumbar region and on intervertebral lateral shear at different levels of the thoracolumbar/lumbar scoliotic curve, during simulated trunk motions in the three anatomical planes (flexion/extension, lateral bending, and axial rotation). A spine model with articulated ribcage previously developed in AnyBody software and adapted to replicate the spinal alignment in AIS subjects is employed. An existing dataset of 100 subjects with mild and moderate scoliosis is exploited. The results pointed out the significant impact of lumbar spine rhythm configuration and disc stiffness on changes in the evaluated outputs, as well as a relationship with scoliosis severity. Unfortunately, no optimal settings can be identified due to lack of reference validation data. According to that, extreme caution is recommended when aiming to adapt models of adult individuals with physiological alignments to adolescent subjects with scoliotic deformity.
Journal Article
Optimization of a lumbar interspinous fixation device for the lumbar spine with degenerative disc disease
2022
Interspinous spacer devices used in interspinous fixation surgery remove soft tissues in the lumbar spine, such as ligaments and muscles and may cause degenerative diseases in adjacent segments its stiffness is higher than that of the lumbar spine. Therefore, this study aimed to structurally and kinematically optimize a lumbar interspinous fixation device (LIFD) using a full lumbar finite element model that allows for minimally invasive surgery, after which the normal behavior of the lumbar spine is not affected. The proposed healthy and degenerative lumbar spine models reflect the physiological characteristics of the lumbar spine in the human body. The optimum number of spring turns and spring wire diameter in the LIFD were selected as 3 mm and 2 turns, respectively—from a dynamic range of motion (ROM) perspective rather than a structural maximum stress perspective—by applying a 7.5 N∙m extension moment and 500 N follower load to the LIFD-inserted lumbar spine model. As the spring wire diameter in the LIFD increased, the maximum stress generated in the LIFD increased, and the ROM decreased. Further, as the number of spring turns decreased, both the maximum stress and ROM of the LIFD increased. When the optimized LIFD was inserted into a degenerative lumbar spine model with a degenerative disc, the facet joint force of the L3-L4 lumbar segment was reduced by 56%–98% in extension, lateral bending, and axial rotation. These results suggest that the optimized device can strengthen the stability of the lumbar spine that has undergone interspinous fixation surgery and reduce the risk of degenerative diseases at the adjacent lumbar segments.
Journal Article