Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
1,860
result(s) for
"Luminescent Measurements - methods"
Sort by:
Lack of placental transfer of certolizumab pegol during pregnancy: results from CRIB, a prospective, postmarketing, pharmacokinetic study
by
Helmer, Eric
,
Förger, Frauke
,
Wang, Maggie
in
Adolescent
,
Adult
,
Antirheumatic Agents - adverse effects
2018
ObjectivesThere is a need for effective and safe treatment during pregnancy in women with chronic inflammatory diseases. This study evaluated placental transfer of certolizumab pegol (CZP), an Fc-free anti-tumour necrosis factor drug, from CZP-treated pregnant women to their infants.MethodsCRIB was a pharmacokinetic (PK) study of women ≥30 weeks pregnant receiving commercial CZP for a locally approved indication (last dose ≤35 days prior to delivery). Blood samples were collected from mothers, umbilical cords and infants at delivery, and infants again at weeks 4 and 8 post-delivery. CZP plasma concentrations were measured with a highly sensitive and CZP-specific electrochemiluminescence immunoassay (lower limit of quantification 0.032 μg/mL).ResultsSixteen women entered and completed the study. Maternal CZP plasma levels at delivery were within the expected therapeutic range (median [range] 24.4 [5.0–49.4] μg/mL). Of the 16 infants, 2 were excluded from the per-protocol set: 1 due to missing data at birth and 1 due to implausible PK data. Of the remaining 14 infants, 13 had no quantifiable CZP levels at birth (<0.032 μg/mL), and 1 had a minimal CZP level of 0.042 μg/mL (infant/mother plasma ratio 0.0009); no infants had quantifiable CZP levels at weeks 4 and 8. Of 16 umbilical cord samples, 1 was excluded due to missing data; 3/15 had quantifiable CZP levels (maximum 0.048 μg/mL).ConclusionsThere was no to minimal placental transfer of CZP from mothers to infants, suggesting lack of in utero foetal exposure during the third trimester. These results support continuation of CZP treatment during pregnancy, when considered necessary.Trial registration number NCT02019602; Results.
Journal Article
Genetically encoded bioluminescent voltage indicator for multi-purpose use in wide range of bioimaging
by
Arai, Yoshiyuki
,
Daniels, Matthew J.
,
Matsuda, Tomoki
in
14/5
,
631/1647/2253
,
631/1647/245/2222
2017
We report development of the first genetically encoded bioluminescent indicator for membrane voltage called LOTUS-V. Since it is bioluminescent, imaging LOTUS-V does not require external light illumination. This allows bidirectional optogenetic control of cellular activity triggered by Channelrhodopsin2 and Halorhodopsin during voltage imaging. The other advantage of LOTUS-V is the robustness of a signal-to-background ratio (SBR) wherever it expressed, even in the specimens where autofluorescence from environment severely interferes fluorescence imaging. Through imaging of moving cardiomyocyte aggregates, we demonstrated the advantages of LOTUS-V in long-term imaging are attributable to the absence of phototoxicity, and photobleaching in bioluminescent imaging, combined with the ratiometric aspect of LOTUS-V design. Collectively LOTUS-V extends the scope of excitable cell control and simultaneous voltage phenotyping, which should enable applications in bioscience, medicine and pharmacology previously not possible.
Journal Article
Maintain the light, long-term seasonal monitoring of luminous capabilities in the brittle star Amphiura filiformis
by
Duchatelet, Laurent
,
Bayaert, Wendy Shirley
,
Delroisse, Jérôme
in
631/601/1737
,
704/829/826
,
Amphiura filiformis
2024
The European brittle star
Amphiura filiformis
emits blue light, via a
Renilla
-like luciferase, which depends on the dietary acquisition of coelenterazine. Questions remain regarding luciferin availability across seasons and the persistence of luminous capabilities after a single boost of coelenterazine. To date, no study has explored the seasonal, long-term monitoring of these luminous capabilities or the tracking of luciferase expression in photogenic tissues. Through multidisciplinary analysis, we demonstrate that luminous capabilities evolve according to the exogenous acquisition of coelenterazine throughout adult life. Moreover, no coelenterazine storage forms are detected within the arms tissues. Luciferase expression persists throughout the seasons, and coelenterazine's presence in the brittle star diet is the only limiting factor for the bioluminescent reaction. No seasonal variation is observed, involving a continuous presence of prey containing coelenterazine. The ultrastructure description provides a morphological context to investigate the green autofluorescence signal attributed to coelenterazine during luciferin acquisition. Finally, histological analyses support the hypothesis of a pigmented sheath leading light to the tip of the spine. These insights improve our understanding of the bioluminescence phenomenon in this burrowing brittle star.
Journal Article
Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model
by
Uhrbom, Lene
,
Holland, Eric C
,
Nerio, Edward
in
Animals
,
Bioluminescence
,
Biomedical and Life Sciences
2004
Bioluminescence imaging has previously been used to monitor the formation of grafted tumors
in vivo
and measure cell number during tumor progression and response to therapy. The development and optimization of successful cancer therapy strategies may well require detailed and specific assessment of biological processes in response to mechanistic intervention. Here, we use bioluminescence imaging to monitor the cell cycle in a genetically engineered, histologically accurate model of glioma
in vivo
. In these platelet-derived growth factor (PDGF)-driven oligodendrogliomas, G1 cell-cycle arrest is generated by blockade of either the PDGF receptor or mTOR using small-molecule inhibitors.
Journal Article
Single-cell bioluminescence imaging of deep tissue in freely moving animals
by
Hioki, Hiroyuki
,
Hasegawa, Naomi
,
Tanaka, Kazumasa Z.
in
Animals
,
Benzothiazoles - chemistry
,
Bioengineering
2018
Bioluminescence imaging is a tremendous asset to medical research, providing a way to monitor living cells noninvasively within their natural environments. Advances in imaging methods allow researchers to measure tumor growth, visualize developmental processes, and track cell-cell interactions. Yet technical limitations exist, and it is difficult to image deep tissues or detect low cell numbers in vivo. Iwano
et al.
designed a bioluminescence imaging system that produces brighter emission by up to a factor of 1000 compared with conventional technology (see the Perspective by Nasu and Campbell). Individual tumor cells were successfully visualized in the lungs of mice. Small numbers of striatal neurons were detected in the brains of naturally behaving marmosets. The ability of the substrate to cross the blood-brain barrier should provide important opportunities for neuroscience research.
Science
, this issue p.
935
; see also p.
868
A bioengineered light source allows in vivo imaging of individual cells.
Bioluminescence is a natural light source based on luciferase catalysis of its substrate luciferin. We performed directed evolution on firefly luciferase using a red-shifted and highly deliverable luciferin analog to establish AkaBLI, an all-engineered bioluminescence in vivo imaging system. AkaBLI produced emissions in vivo that were brighter by a factor of 100 to 1000 than conventional systems, allowing noninvasive visualization of single cells deep inside freely moving animals. Single tumorigenic cells trapped in the mouse lung vasculature could be visualized. In the mouse brain, genetic labeling with neural activity sensors allowed tracking of small clusters of hippocampal neurons activated by novel environments. In a marmoset, we recorded video-rate bioluminescence from neurons in the striatum, a deep brain area, for more than 1 year. AkaBLI is therefore a bioengineered light source to spur unprecedented scientific, medical, and industrial applications.
Journal Article
Insights into the mechanism of coreactant electrochemiluminescence facilitating enhanced bioanalytical performance
by
Canola, Sofia
,
Valenti, Giovanni
,
Rapino, Stefania
in
639/638/11
,
639/638/11/511
,
639/638/161
2020
Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis.
Electrochemiluminescence (ECL) is a leading technique in biosensing. Here the authors identify an ECL generation mechanism near the electrode surface, which they exploit in combination with the use of branched amine coreactants to improve the ECL signal beyond the state-of-the-art immunoassays.
Journal Article
Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals
2020
Sensitive detection of two biological events in vivo has long been a goal in bioluminescence imaging. Antares, a fusion of the luciferase NanoLuc to the orange fluorescent protein CyOFP, has emerged as a bright bioluminescent reporter with orthogonal substrate specificity to firefly luciferase (FLuc) and its derivatives such as AkaLuc. However, the brightness of Antares in mice is limited by the poor solubility and bioavailability of the NanoLuc substrate furimazine. Here, we report a new substrate, hydrofurimazine, whose enhanced aqueous solubility allows delivery of higher doses to mice. In the liver, Antares with hydrofurimazine exhibited similar brightness to AkaLuc with its substrate AkaLumine. Further chemical exploration generated a second substrate, fluorofurimazine, with even higher brightness in vivo. We used Antares with fluorofurimazine to track tumor size and AkaLuc with AkaLumine to visualize CAR-T cells within the same mice, demonstrating the ability to perform two-population imaging with these two luciferase systems.
NanoLuc substrates with improved solubility and bioavailability, hydrofurimazine and fluorofurimazine, strongly enhance bioluminescence signals in vivo and enable bright dual-color bioluminescent imaging with AkaLuc and AkaLumine.
Journal Article
A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo
2016
In vivo
imaging is facilitated by a bright, cyan-excitable orange fluorescent protein that is the basis of an improved bioluminescent protein.
Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals owing to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright, engineered, orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter
in vivo
, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.
Journal Article
In Vivo Molecular Bioluminescence Imaging: New Tools and Applications
by
Karatas, Hacer
,
Goun, Elena A.
,
Mezzanotte, Laura
in
Animals
,
Bioluminescence
,
bioluminescence imaging
2017
in vivo bioluminescence imaging (BLi) is an optical molecular imaging technique used to visualize molecular and cellular processes in health and diseases and to follow the fate of cells with high sensitivity using luciferase-based gene reporters. The high sensitivity of this technique arises from efficient photon production, followed by the reaction between luciferase enzymes and luciferin substrates. Novel discoveries and developments of luciferase reporters, substrates, and gene-editing techniques, and emerging fields of applications, promise a new era of deeper and more sensitive molecular imaging.
BLi is now a standard technique for in vivo imaging of gene expression and to follow cells and their fate. However, many applications are limited by the use of a single reporter and limited sensitivity in deep tissue.
Novel far-red and near-infrared emitting systems for enhanced sensitivity and resolution in deep tissue and multicolor applications have recently become available.
Caged bioluminescent substrates for analyzing specific enzyme activity or detecting bioactive small molecules are under development.
Opportunities in technical improvements of signal acquisition and processing are emerging.
Newly available bioluminescent tools and recent applications are altering the practice of BLI.
Journal Article
Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions
2022
The molecular machinery of life is founded on chiral building blocks, but no experimental technique is currently available to distinguish or monitor chiral systems in live cell bio-imaging studies. Luminescent chiral molecules encode a unique optical fingerprint within emitted circularly polarized light (CPL) carrying information about the molecular environment, conformation, and binding state. Here, we present a CPL Laser Scanning Confocal Microscope (CPL-LSCM) capable of simultaneous chiroptical contrast based live-cell imaging of endogenous and engineered CPL-active cellular probes. Further, we demonstrate that CPL-active probes can be activated using two-photon excitation, with complete CPL spectrum recovery. The combination of these two milestone results empowers the multidisciplinary imaging community, allowing the study of chiral interactions on a sub-cellular level in a new (chiral) light.
Here, the authors introduce a live-cell imaging system using chiroptical contrast, enabling the study of chiral interactions. They demonstrate simultaneous imaging of enantiomeric pairs of molecular probes emitting circularly polarised light, using both single and two-photon excitation.
Journal Article